Mark Scheme (Results)

Summer 2017

Pearson Edexcel International Advanced Level In Biology (WBIO1) Paper 01 Lifestyle, Transport, Genes and Health

edexcel 쁯

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2017
Publications Code WBIO1_01_1706_MS
All the material in this publication is copyright
© Pearson Education Ltd 2017

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question Number	Answer	Mark
$\mathbf{1 (a) (\mathbf { i })}$	$\mathbf{1 (a) (\mathbf { i }) . \text { The only correct answer is C }}$	
	\boldsymbol{A} is not correct because adenine pairs with thymine	
	\mathbf{B} is not correct because adenine pairs with thymine	
\boldsymbol{D} is not correct because uracil is not used in DNA	(1)	

Question Number	Answer	Mark
$\mathbf{1 (a) (i i)}$	$\mathbf{1 (a) (i i) . ~ T h e ~ o n l y ~ c o r r e c t ~ a n s w e r ~ i s ~ C ~}$	
	A is not correct because N labels a hydrogen bond which is not a covalent bond \boldsymbol{B} is not correct, glycosidic bonds are formed between sugars and are not present in DNA D is not correct because N labels a hydrogen bond which is not the phosphodiester bond that joins nucleotides to form chains of polynucleotide	(1)

Question Number	Answer	Mark
$\mathbf{1 (a) (\mathbf { i i i) }}$	$\mathbf{1 (a) (i i i) . ~ T h e ~ o n l y ~ c o r r e c t ~ a n s w e r ~ i s ~ C ~}$	
	\boldsymbol{A} is not correct because box P contains a base	
	\boldsymbol{B} is not correct because box Q contains a nucleoside (deoxyribose and base)	
\boldsymbol{D} is not correct because box S contains a pair of complementary bases	(1)	

Question Number	Answer	Additional guidance	Mark
$\mathbf{1 (b)}$	deoxyribose ;	IGNORE pentose/sugar	

Question Number	Answer	Additional guidance	Mark
1(c)(i)	1. both strands of original DNA (molecule) are copied/replicated/act as templates; 2. idea that \{daughter / new / eq\} DNA molecules contain one original strand and one new strand ;	ACCEPT MP1 and 2 from a correctly labelled diagram	

Question Number	Answer	Additional guidance	Mark
$\mathbf{1 (c) (i i)}$	Meselson and Stahl ;	ACCEPT phonetic spellings	(1)

Question Number	Answer	Additional guidance	Mark
2(a)	1. allele is an (alternative) form/version of a gene ;	MP1 do not accept type of gene	MP2 ACCEPT not expressed if dominant allele present/if heterozygous

Question Number	Answer	Additional guidance	Mark
2(b)	1. parents and offspring for each generation identified; 2. phenotype(s) identified ; IGNORE Punnett squares/genetic crosses MP1 ALLOW family history/ancestry 3. for $\{\mathrm{HC} /$ /recessive condition\} two normal/unaffected parents may have \{one or more / some / eq\} offspring that are affected ;MP2 ALLOW identification of individuals with/without condition	MP2 and 3-IGNORE ref to carriers as this refers to genotype	(3)

Question Number	Answer	Additional guidance	Mark
2(c)	1. amniocentesis ; 2. amniotic fluid collected ; 3. between 14 and 20 weeks of pregnancy; 4. cells are cultured (for 2-3 weeks) ; or 5. chorionic villus sampling/CVS ; 6. sample taken from placenta ; 7. between 8 and 12 weeks of pregnancy ; 8. DNA analysed (for recessive allele) ;	If method does not match description do not award first mark. MP3 and 7 ACCEPT given time(s) within the stated range MP6 IGNORE from chorionic villi	(4)

Total for Question 2 = 9 MARKS

Question Number	Answer	Mark
3(a)(i)	3(a)(i). The only correct answer is B \boldsymbol{A} is not correct because the correct sequence of events is atrial systole \rightarrow ventricular systole \rightarrow atrial diastole \rightarrow ventricular diastole	
\boldsymbol{C} is not correct because the correct sequence of events is atrial systole \rightarrow ventricular systole \rightarrow atrial diastole \rightarrow ventricular diastole		
\boldsymbol{D} is not correct because the correct sequence of events is atrial systole \rightarrow ventricular systole \rightarrow atrial diastole \rightarrow ventricular diastole	$\mathbf{(1)}$	

Question Number	Answer	Mark
$\mathbf{3 (a) (i i)}$	3(a)(ii). The only correct answer is D \boldsymbol{A} is not correct because at 0.5 seconds the ventricle is filling so atrioventricular valves are open and the semilunar valves closed	
B is not correct because at 0.5 seconds the ventricle is filling so atrioventricular valves are open and the semilunar valves closed \boldsymbol{D} is not correct because at 0.5 seconds the ventricle is filling so atrioventricular valves are open and the semilunar valves closed	(1)	

Question Number	Answer	Mark
$\mathbf{3 (a) (i i i)}$	$\mathbf{3 (a) (i i i) . ~ T h e ~ o n l y ~ c o r r e c t ~ a n s w e r ~ i s ~ D ~}$	
	\boldsymbol{A} is not correct because at 0.22 seconds the atria is in diastole	
	B is not correct because at 0.52 seconds the atria is in diastole	
\boldsymbol{C} is not correct because at 0.72 seconds the atria is in diastole		

Question Number	Answer	Additional guidance	Mark
$\mathbf{3 (a) (i v)}$	1.0 .8 (seconds);	MP1 ACCEPT: 0.79 (seconds)	
	2. 75 (beats per minute);	MP 2: ACCEPT 76 Correct answer with no working shown gains both marks	(2)

Question Number	Answer	Additional guidance	Mark
3(b)(i)	1. (training) reduces/lowers the heart rate ; 2. In a trained person heart rate does not increase as much during exercise ; 3. idea that during exercise heart rate plateaus/levels off (in a trained person);	ACCEPT converses for MPs 1, 2 and 3	

Question Number	Answer	Additional guidance	Mark
3(b)(ii)	1. low blood pressure ;		
	2. low heart rate ; 3. _heart/cardiac muscle\} is stronger ; 4. not overweight ; MP4 ALLOW lower BMI/less body 5. changes LDL/HDL ratio/lowers cholesterol ; fat		

\(\left.$$
\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Question } \\
\text { Number }\end{array} & \text { Answer } & \text { Additional guidance } & \text { Mark } \\
\hline \text { 4(a)(i) } & & \begin{array}{l}\text { ACCEPT a correctly annotated } \\
\text { diagram. } \\
\text { MP1 IGNORE: references to alpha } \\
\text { and beta }\end{array}
$$ \&

\& \begin{array}{l}1. glucose and fructose ;

2. joined by condensation reaction / water produced ;

3. forming a glycosidic \{bond/link\} ;\end{array} \& MP3 IGNORE: numbered bonds\end{array}\right\}\) (3) | (3) |
| :--- |

Question Number	Answer	Additional guidance	Mark
4(a)(ii)	1. (many) glucose molecules joined by glycosidic \{bonds /links\} ; 2. amylose and amylopectin ;		
3. amylose \{is linear / is unbranched / is helical / has 1,4 bonds\} ; 4. amylopectin \{is branched / has 1,4 and 1,6 bonds \} ;	MP4 ACCEPT: has many terminal ends	(3)	

Question Number	Answer	Additional guidance	Mark
4(b)(i)	1. as the percentage of added sugar increases the (LDL:HDL) ratio increases;	MP1 ACCEPT: there is a positive correlation between added sugar and ratio	
2. (resulting in) high level of LDLs in the blood; ; 3. high \{ratio/ level of LDLs\} is a risk factor for \{CVD/atherosclerosis\}; ;		(3)	

Question Number Answer Additional guidance Mark 4(b)(ii) 1. CVD takes a long time to develop ; 2. Added sugar has no \{ obvious / immediate / eq \} adverse effect; 3. not knowing about the risks of added sugar / eq ; Question Number Answer Additional guidance Mark 4(b)(iii) 1. statins lower (LDL) cholesterol ; 2. (statins) reduce the ratio of LDL to HDL ; 3. effects of sugar intake might be counteracted by effect of statins ; 4. if they were included the study would not be not valid ; MP 4 IGNORE reliability /accuracy (2)

Question Number	Answer	Additional guidance	Mark
$\mathbf{5 (a) (\mathbf { i })}$	1. measurement of $13(\mathrm{~mm}) / \div$ by $12 ;$ $2.1 .1(\mathrm{~mm}) ;$ ALLOW: $1.3(\mathrm{~cm})$ ALLOW: $1.08(\mathrm{~mm})$ IGNORE: answers to more than 2 decimal places Correct answer with no working gains full marks	(2)	

Question Number	Answer	Additional guidance	Mark
5(a)(ii)	1. (vein) walls \{are thinner / have less collagen\} because blood pressure is lower ; 2. (veins) have \{less / no\} elastic fibres as they do not need to \{stretch/ recoil\}; 3. (veins) have valves to prevent the back flow of blood; 4. (veins) have a large lumen to reduce resistance to blood flow/eq;	ACCEPT converse explanations for arteries only with a clear comparison MP2 ACCEPT: arteries have elastic fibres which smooth out blood flow	(2)

Question Number Answer Additional guidance Mark 5(b)(i) 1. Idea of slow blood flow in (large) veins ; 2. initiates clotting cascade ; 3. prothrombin converted to thrombin ; 4. leading to conversion of fibrinogen to fibrin ; 5. fibrin is insoluble ; 6. trapping \{red blood cells / platelets\} (to form a clot); MP2 ACCEPT: release of thromboplastin, thrombokinase or platelet activation Question Number Answer Additional guidance Mark 5(b)(ii) 1. clots formed in veins move to the lungs / eq ; 2. clots block blood vessels ; 3. reduced blood flow (through lungs) ; 4. reduced \{gas exchange /uptake of oxygen\} in the lungs ; 5. idea that oxygen is still being removed from the blood elsewhere in the body ; MP2 ACCEPT named blood vessels,

Question Number	Answer	Additional guidance	Mark
5(b)(iii)	1. changes in \{breathing rate / oxygen concentration\} could be due to another cause ; 2. fibrin fragments can be found in both VTE and non-VTE patients; 3. idea that using all three criteria increases diagnostic accuracy ;		

Question Number	Answer	Additional guidance	Mark
$\mathbf{6 (a) (\mathbf { i })}$	phospholipid;	DO NOT ACCEPT: phospholipid bilayer/layer	(1)

Question Number	Answer	Additional guidance	Mark
6(a)(ii)	1. (phospholipids) form a bilayer as they have a polar head and non-polar tails; 2. proteins are located between the phospholipids; 3. (because of) interactions between R groups of proteins and phospholipids; 4. phospholipids are free to move which makes the membrane fluid;	MP2 ALLOW: embedded in bilayer	

Question Number	Answer	Additional guidance	Mark
6(b)(i)	1. as the pH increases from pH 2 to pH 4 the permeability decreases ; 2. between pH 4 and pH 6 the permeability is $\{$ low / constant $\} ;$ 3. as the pH increases from pH 6 (to pH 12$)$ the permeability increases ;	IGNORE: any reference to absorbance	MP1 ACCEPT: pH 2 has the highest permeability ;

Question Number	Answer	Additional guidance	Mark
$\mathbf{6 (b) (i i)}$	1. idea that when the pH is $\{$ high / low\} the proteins are \{denatured /damaged $\}$ 2. therefore holes are created in the membrane ;	MP1 ACCEPT extremes of pH	

Question Number	Answer	Mark
$\mathbf{7 (a)}$	7(a). The only correct answer is C	
\boldsymbol{A} is not correct because the bond between amino acids is a peptide bond the ester bond joins		
fatty acids and glycerol molecules		
\boldsymbol{B} is not correct because the bond between amino acids is a peptide bond the glycosidic bond		
joins sugar molecules in polysaccharides		
D is not correct because the bond between amino acids is a peptide bond the phosphodiester bond joins fatty nucleic acids together in a polynucleotide	(1)	

Question Number	Answer	Additional guidance	Mark
*7(b)(i)	(QWC - Spelling of technical terms must be correct and the answer must be organised in a logical sequence) 1. (transcription of the prolidase gene) occurs in the nucleus; 2. DNA unwinds ; 3. (RNA) nucleotides bind to DNA ; 4. to the \{template / antisense\} strand of DNA ; 5. by complementary base pairing ; 6. RNA polymerase joins the (RNA) mononucleotides together ; 7. by the formation of phosphodiester bonds ;	QWC emphasis is logical sequence [penalise once only] MP2 ACCEPT DNA strands separate or unzip MP3 ACCEPT forming H bonds for binding, must give some idea of attachment, not just pairing MP5 ACCEPT examples of complementary base pairing QWC marks: identify all marks scored, and if a QWC deduction applies subtract one mark	(5)

Question Number	Answer	Additional guidance	Mark
7(b)(ii)	1. idea that a mutation is a change in \{base / nucleotide\} sequence (of the prolidase gene); 2. change in the primary structure (of prolidase) ; 3. change in the bonds (that are involved in the folding); 4. change in the shape of \{prolidase / enzyme / active site\} ; 5. idea that no enzyme-substrate complexes formed ;	MP4 ACCEPT: 3D or tertiary MP3 ACCEPT: any correct type sequence of amino acids or R groups structure	(4)

Total for Question 7 = $\mathbf{1 0}$ MARKS

Question Number	Answer	Additional guidance	Mark
$\mathbf{8 (a) (i)}$	1.135 .0	This can be calculated in two different ways. 2. $60(\%)$ Or 3. 135.0 $4.150(\%)$	Either correct answer with no working gains 2 marks.

Question Number	Answer	Additional guidance	Mark
$\mathbf{8 (a) (i i)}$	1. it is long and thin ; 2. it has a large surface area to volume ratio; 3. oxygen enters the body by diffusion ; 4. idea of outer surface of T. tubifex is permeable to gases ;		

Question Number	Answer	Additional guidance	Mark
*8(b)	(QWC - Spelling of technical terms must be correct and the answer must be organised in a logical sequence)	QWC emphasis is spelling of technical terms [penalise once only]	
	1. walls of alveoli are thin ; 2. walls of capillaries are thin ; 3. idea of short diffusion distance ; 4. idea that alveoli are covered with capillaries ; made of one layer of flattened cell		
	5. idea that the large number of \{alveoli / capillaries\} provide a large surface area ; 6. idea that concentration gradient maintained by \{ventilation / breathing / eq \};	MP5 do not ACCEPT: large surface to volume area	
7. idea that concentration gradient maintained by blood flow ;			

Total for Question $8=10$ MARKS

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code

For more information on Edexcel qualifications, please visit our website www.edexcel.com

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom

Ofqual

Welsh Assembly Government

Rewarding Learning

