

Mark Scheme (Results)

Summer 2019

Pearson Edexcel International Advanced level In Statistics S3 (WST03/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2019 Publications Code WST03_01_1906_MS All the material in this publication is copyright © Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

Question Number	Scheme								
1(a)	Number all of the students in each year group.								
	Use rando	om numbers to select/take a (simple) random sample of	B1						
	24 studen	tts in <u>Group 1</u> (year 7-9)							
	20 studen	tts in <u>Group 2</u> (year 10-11)	B1						
	<u>6</u> students	s in <u>Group 3</u> (year 12-13)							
			(3)						
(b)	'It is mor	• representative when there might be systematic differences between age groups.	B1						
			(1)						
			Total 4						
	Notes								
1(a)	B1	For numbering/labelling/ordering (o.e.) students in each group (Condone po	oor						
		numbering but if just one numbered list, the Groups must be distinguishable)						
	B1	For use of random sample/numbers/selection							
	B1	All 3 numbers correct with associated groups							
(b)	B1 Any suitable advantage of using stratified sampling versus simple random sampling								
	e.g. 'it gives more accurate estimates for each strata'								
		or 'each year group is fairly represented'							
		or 'reflects the population structure'							
		more accurate on its own is B0							

Question Number	Scheme								Marks
2(a)	H ₀ : The	e is no ass	ociati	on betw	een gender	and fav	ourit	te activity (independent)	B1
2(a)	H_1 : There is an association between gender and favourite activity (dependent)								M
	Find Water Buck met Mountain Tatal								IVI I
	Ехра	sports	Dus		activities	1018	.II	-	
	Boys	147.6	83.1	7 28	97.228	(328)	-	A1
	Total	(252)	(142	20 ()	(166)	(232	<u>)</u>	-	
						.2			
	Observe	ed Expec	ted	$\frac{(O-E)}{E}$	$\frac{1}{2}$ $\frac{1}{2}$) ² 			1) (1
	142	147	.6	$\frac{E}{0.212.}$	136.	ء 12			dM1
	110	104	.4	0.3003	115.9	003			
	96	83.1	7	1.978.	110.	307			
	46	58.8	3	2.797.	35.9	68			
	90	97.2	23	0.537.	83.3	08			
	76	68.7	'7	0.759.	83.9	88			
		То	otals	6.5863	566.5	362613			
	$\chi^2 = \sum \frac{(O-E)^2}{E}$ or $\sum \frac{O^2}{E} - 560;$								dM1
	= awr	t 6.6		2					A1
	v = (2 - 1)	1(3-1) = 2	2						B1
	$\chi_2^2(0.05) = 5.991 \implies CR: \ \chi^2 \ge 5.991$								B1
	[in the CR/significant/Reject H ₀]								
	conclude that there is evidence of an association (o.e.) between gender and favourite activity								A1
						2			(9)
(b)	Bushcraft as these contribute the most to the χ^2 valueB							B1 (1)	
									(1) Total 10
		1				Notes	i		
(a)	B 1	For both l	nypoth	eses. M shin" or	ust mention	"gender' ' or "cor	' and	<i>l</i> "activity" o.e. at least once.	
				(Row]	Fotal)(Colur	n Total)		
	M1	Some atte	mpt at		(Grand Tota	1)	-, ca	in be implied by at least one correct	E_i to 1dp
	A1	All expec	ted fre	quencies	are correct	to awrt 1	dp.		
	dM1	At least 2	correc	et terms f	for $\frac{(O-E)^2}{E}$	or $\frac{O^2}{E}$ or	corre	ect expressions with their E_i .	
	dM1 Dep on previous M being awarded. For applying either $\sum \frac{(O-E)^2}{E}$ or $\sum \frac{O^2}{E} - 560$								
	A1	awrt <u>6.6</u>							
	B1	v = 2 (The formula $v = 2$)	nis mai	rk can be	e implied by	a correct	criti	ical value of 5.991)	
	RI	5.991 con	done 5	3^{rd} M1	p value 0.03	/	ntev	tualised conclusion rejecting U	
	A1	Condone	"relati	onship"	or "connecti	on" here	but I	not "correlation".	
(b)	B 1	Bushcraft	and re	eason – a	llow compa	isons of	proj	portions	

Question Number	Scheme										Marks	
3(a)	singe	rs A	В	С	D	E	F	G	Н	Ι		
	Rank Ja	mil 3	1	2	9	7	5	4	8	6		M1
	Rank ag	ge 1	4	5	7	6	3	2	9	8		
	$\sum d^2 = 4 + 9 + 9 + 4 + 1 + 4 + 4 + 1 + 4 = 40$											M1A1
	$r_{\rm c} = 1 - \frac{6(40)}{1000} := 0.6666$											dM1A1
	9(80)											
(b)	H : a = 0 $H : a > 0$											(5) D1
(0)	$\mathbf{\Pi}_{0} \cdot \boldsymbol{\rho} = \mathbf{U}, \mathbf{\Pi}_{1} \cdot \boldsymbol{\rho} > \mathbf{U}$										DI D1	
	Critical Value $r_s = 0.6$										BI	
	Either re	$\operatorname{pect} H_0 / a$	iccept 1	H_1 / Re	sult is	signific	r_s	= 0.666	does	s lie in i	the CR	MI
	conclude	that there	e 1s evi	dence t	that Jar	nıl can	rank s	ingers i	n orde	r of age	e by listening	A1ft
	to them s	ang										(4)
(c)	Give eac	h singer a	rank o	f 3.5								B1
	Use the p	omcc										B1
												(2)
		1.				No	tes			_		Total 11
(a)	M1	Attempt (Allow r	to rank everse r	tor Jam ankings	11's esti:	mate an	d actua	l ages. (At least	t 5 corre	ct in either row)
	M1	For findi	ng diffe	erence b	etween	each of	their r a	anks and	d evalua	ating Å	d^2 (may be implicitly be implicitly be implicitly be implicitly be implicitly be implicitly be a set of the set of th	plied by A1)
	Δ1	$\sum d^2 = d^2$	40									
										$6' \Sigma d$	2 1	
	dM1	Depende	ent on t	the 2 pr	revious	M bein	ng awa	rded. U	sing 1	$-\frac{0 \ a}{9(80)}$)	
	A1	Awrt 0.0	567									
		Mayaaa										
		singe	ore	R (\sim	1 (2	F	T I	F I		
		Rank I	amil	$\frac{D}{1}$	$\frac{1}{2}$	$\frac{1}{3}$		5 6	$\frac{1}{5}$	7 8	$\frac{1}{3}$ $\frac{D}{9}$	
		Rank a	ge	4 5	5		$\frac{1}{2}$	3 8	3	6 9	\overrightarrow{r}	
(b)	B1	Both hyp	otheses	stated	in terms	s of r c	or $\rho_{\rm s}$.				I	
	B1	0.6 for C	CV				. 3					
	M1 For a correct non-contradictory statement relating their r_c ($ r_c < 1$) with their c.v.								v.			
		where t	heir c.v	. < 0.6	allow	'Do no	t reject	H ₀ ', '	not sig	nifican	', 'not in criti	cal region'
		for the r	nethod	mark			5	0 ,	U		,	e
	A1ft	Depende	ent on a	all prev	ious m	arks in	(b) scc	ored. Ft	their a	nswer t	o part(a)	
		For a co	rrect co	ontextu	alised o	comme	nt whic	ch has r	ank, si	nger/vo	vice and age.	
		Follow	through	their	r _s with	0.6 (pr	ovided	their	$ r_s < 1$)		
	Note:	Two-tail	led test									
		Applying	g a two-	tailed te	est score	es a max	kimum o	of B0B1	M1A0			
		So Awai	rd SC B	60B1 for	$H_0:\rho$	= 0, 1	$H_1: \rho \neq$	0 follo	wed by	critical	value $r_s = (\pm)$	0.7
	D 4	and allow	v access	to the	M1 mar	k only.						
(c)	B1	For use	ot rank	3.5	f 19	t D 1)						
	RI	Use pm	cc (inde	epender	nt of 1°	. В Т)						

Question Number	Scheme							
4(a)	10.84 0.008 10840 22262 8 any z value							
	$50^{\pm 2}$	$\frac{1}{\sqrt{50}}$ or $\frac{1}{50} \pm 2.3263 \times \frac{1}{\sqrt{50}}$	2.3263	B1				
	=(0.214)	(, 0.2194,) = awrt (0.214, 0.219) or (214, 219)		A1				
	`			(4)				
(b)	Since the will also	weights (of individual packets) are normally distributed be normally distributed).	l (the sample means	B1				
				(1)				
(c)	Bindy's b	belief is not supported as 0.22 kg is outside of the CI		B1ft				
				(1)				
				Total 6				
		Notes						
4(a)	M1	$\frac{10.84}{50} \pm z \times \frac{0.008}{\sqrt{50}}$ or $\frac{10840}{50} \pm z \times \frac{8}{\sqrt{50}}$ where $ z > 2$ an	d condone mixed unit	S				
	A1	allow $\frac{10.84}{50} \pm z \times \frac{0.008}{\sqrt{50}}$ or $\frac{10840}{50} \pm z \times \frac{8}{\sqrt{50}}$ units must	t be consistent					
	D 1	2.3263 (condone awrt 2.33)						
	A1	Both values correct to 3sf						
(b)	B1	Idea that we are told the underlying variable is normally dis	tributed					
(c)	B1ft	Ft their CI						
		Do not allow ft if their interval includes 0						

Question Number	Scheme							
5	P(.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		M1				
	$\mathrm{E}(X)=2.$	5		A1				
	Var(X) =	$9.5 - 2.5^2 = 3.25$		M1				
	$\overline{X} = \text{mea}$	an of 60 rolls						
	$P(\overline{X} > 2.75) \approx P\left(Z > \frac{2.75 - 2.5}{\sqrt{3.25/60}}\right)$ [by CLT]							
		=1-P(Z<1.074)						
		= 1 - 0.8586 [= 0.1414] [0.1423 from tables]		M1				
	10×("0.1	$(1414'')^2 (1-"0.1414'')^3$		M1				
		awrt 0.127/0.128	A1					
				(8)				
		Notes		Total 8				
	M1Setting up the distribution – may be implied by correct $E(X)$ or $Var(X)$ A1For $E(X)$ M1If distribution given allow $9.5 - "(their E(X))^2 or "their E(X^2)-"(their E(X)shown it must be correct.$							
	Sight of N(2.5, $\frac{13}{240}$) implies M1A1M1							
	M1	5 233						
	A1	$\frac{2.75-2.5}{\sqrt{3.25/60}}$ or awrt 1.07						
	M1	Finding the correct area $p < 0.5$ (may be implied by a correct answer	r)					
	M1	$10 \times ("p")^2 (1 - "p")^3$ with their p						
	A1	awrt 0.127 / 0.128						

Question Number		Scheme		Marks					
6(a)	$H_0: \mu =$	280 $H_1: \mu > 280$		B1					
	$z = \frac{290}{70}$	$\frac{-280}{\sqrt{125}} \qquad \text{or} \frac{c - 280}{70/\sqrt{125}} = 1.6449$		M1					
	=1.597.	c = 290.299		D1					
	CV = 1.64	149		BI					
	There is insufficient evidence to support Baako's claim								
				(5)					
(b)	H. : //. =	$= \mu + 100$ H $: \mu > \mu + 100$		B1					
(0)	$\mu_0 \cdot \mu_f$	$\frac{-\mu_w + 100}{200} = \frac{100}{100}$							
	$z = \frac{410}{5}$	-290-100		M1					
	9	0^2 60 ²		M1					
	V 3	$00^{+}200^{-}$							
	= 2.981	4		A1					
	CV = 2.57	758		B1					
	Significar	t / reject H_0 / accept H_1 / in the critical region		M1					
	There is s	ufficient evidence to support Ayodele's claim		Alcso					
				(7)					
(c)	(1) The p	lants to receive fertiliser are allocated randomly		BI					
	(11) $[n \ 1S]$	sufficiently large that the CL1 holds so that the deviation of normalized		B1					
	standard	deviation of sample \approx standard deviation of population		(2)					
				(2)					
(2)	D1	Both hypotheses correct in terms of U		1011114					
(a)	DI	Four hypotheses correct in terms of μ							
	M1	Standardising with 290, 280 and $\frac{70}{\sqrt{125}}$ (or awrt 6.26)							
	B1	B1 $CV 1.64(49)$ or better (or $p = awrt 0.055$)M1For a correct non-contradictory non-contextual statement (may be implied)							
	M1								
	A1cso	Fully correct solution with a correct comment in context dep upon a	all previous marks	in (a)					
(b)	B 1	Both hypotheses correct – must be clear which is μ_f and μ_w NB:	If use <i>t</i> -test send to	o review					
	M1	410-290							
		for $\pm \frac{110 - 250}{100^2 - 50^2}$ ie ignore incorrect or missing 100							
		$\sqrt{\frac{90^2}{300} + \frac{60^2}{300}}$							
		V 300 200							
	M1	$for + \frac{410 - 290 \pm 100}{2}$							
		$90^2 \cdot 60^2$							
		$\sqrt{\frac{300}{300}} + \frac{200}{200}$							
	A1	Awrt ± 2.98							
	D 1	CV ± 2.5758 (condone awrt 2.58) and compatible sign with their te	est statistic (or $p =$	awrt					
	DI	0.0014)	-						
	M1	Correct non-conflicting comment following from their test statistic	and their critical v	alue					
	Alcso D1	Fully correct solution with a correct comment in context dep upon a	all previous marks	1n (b)					
	BI R1	Realising that they need the sd of the population							
	D1	realising that they need the set of the population							
	•								

Question Number	Scheme								
7(a)									
	$\frac{e^{-2.8}(2.8)}{5!}$	$n^{5} = n = n - 87.63 [n = 96]$		M1					
	Observed	5 and Expected awrt 8.37		A1					
				(2)					
(b)	H ₀ : Poisso H ₁ : Poisso	on(2.8) is a suitable model/ good fit $on(2.8)$ is not a suitable model/ good fit		B1					
	$\chi^2 = \sum_{i=1}^{n}$	$\frac{(O-E)^2}{E} = \frac{("5"-"8.37")^2}{8.37} + \frac{(3-6.25)^2}{6.25} + 9.86$		M1 M1					
	= awr	t <u>12.9</u>		A1					
	Degrees o	f freedom = 6		M1					
	$\chi^2_{6005} = 12.592$								
	[Reject H_0] Data is not consistent with random sampling from a Poisson (2.8) model.								
		Notes							
(a)	M1	Setting up an equation leading to a value for <i>n</i> . eg $5.84 = e^{-1}$ observed and expected (2dp).	$^{-2.8} \times n$ May be implied by	y correct					
	A1	5 and awrt 8.37							
(b)	B 1	Both hypotheses correct must mention $Po(2.8)$ at least once	2						
	M1 For combining last 2 cells to get observed 3 and expected 6.25 or $\frac{(3-6.25)^2}{6.25}$ seen.								
	M1	For $\frac{("5"-"8.37")^2}{8.37} + 9.86 + \dots$ or a fully correct calculate	on						
	A1	awrt 12.9 (this is dependent upon M1M1)							
	M1	Using df for their (number of expected values used -1)							
	A1ft	12.592 (ft 14.067 from df = 7)	\ 11 1 • •						
	A1cso Jeff's model/Poisson is not suitable (condone missing 2.8 here) all marks must have been scored.								

Question Number		Scher	ne	Marks			
8(a)	Let $X = L$	-M	Let $X = L - M - 90$				
	E(X) = 10	0	E(X) = 10	M1			
	$\mathbf{V}_{or}(\mathbf{V})$	$7^2 + \epsilon^2$	$\mathbf{V}_{or}(\mathbf{X}) = 7^2 + \mathbf{C}^2$				
	$\operatorname{var}(X) =$	/ +0	$\operatorname{Var}(X) = 7 + 0$	M1			
	$X \sim N(10)$	0.85)	$X \sim N(10.85)$	A 1			
	11 11(10)	(),00)		AI			
	P(X > 90)	$P = P\left(Z > \frac{90 - 100}{\sqrt{85}}\right)$	$P(X > 0) = P\left(Z > \frac{0-10}{\sqrt{85}}\right)$	dM1			
		= 0.8599(calc 0.860)	.) awrt 0.86	A1			
			,	(5)			
(b)	(Let $Y = L$	(-4S)					
	$\mathrm{E}(Y)=20$)		B1			
	Var(Y) = T	$7^2 + 16 \times \sigma^2$		M1			
	$Y \sim N(20)$	$49 + 16\sigma^2$		A1			
	1 1(20,						
	P(Y > 0) =	$= \mathbf{P} \left Z > \frac{0 - 20}{\sqrt{1 - 20}} \right $		M1			
		$\sqrt{49+16\sigma^2}$)				
	0-'20	' – _1 96		M1D1			
	$\sqrt{49+166}$	$\frac{1}{\sigma^2}$ = 1.90		IVII DI			
	2	$0^2 = 1.96^2 \left(49 + 16\sigma^2 \right)$		dM1			
	$\sigma = 1.8561$						
				(8)			
			N. (Total 13			
8 (a)	M1	Either 100 or 10	Notes				
0(a)	M1	For addition of variance	es				
	A1	N(100, 85) or N(10,85)					
	dM1		90-100 0-10				
		Dependent on the first	2 M marks $\sqrt{85''}$ or $\sqrt{85''}$				
(b)	B1	E(Y) = 20	v ••• v •••				
	M1	Use of $16 \times Var +$					
	A1ft	$N('20', 49+16\sigma^2)$ (r	nay be implied by its use)				
	M1	M1 standardising using	their mean, sd and zero				
	M1	Putting standardisation	equal to a z value where $ z > 1.5$				
	B1	-1.96 or better used in	a standardisation equation with compatible signs				
	dM1	Squaring (dependent up	soon 2^{nd} and 3^{rd} M1 marks)				
	A1cso	awrt 1.86 (must come f	rom correct working)				

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom