

# Mark Scheme (Results)

## Summer 2017

Pearson Edexcel International A Level in Statistics S3 (WST03/01)



#### **Edexcel and BTEC Qualifications**

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

#### Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <a href="https://www.pearson.com/uk">www.pearson.com/uk</a>

Summer 2017 Publications Code WST03\_01\_1706\_MS All the material in this publication is copyright © Pearson Education Ltd 2017

#### **General Marking Guidance**

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

### **EDEXCEL IAL MATHEMATICS**

#### General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol  $\sqrt{}$  will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- **\*** The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
  - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
  - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

| Question<br>Number |                                                                                                                                                                                                                                                                                                         |                                                                                                      |          |                      | Scł           | neme        |                     |          |          |          |                                             | Marks               |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------|----------------------|---------------|-------------|---------------------|----------|----------|----------|---------------------------------------------|---------------------|
| <b>1.</b> (a)      | Parrot                                                                                                                                                                                                                                                                                                  |                                                                                                      | Α        | В                    | С             | D           | E                   | F        | G        | Н        |                                             |                     |
|                    | Rank Ag                                                                                                                                                                                                                                                                                                 | -                                                                                                    | 3        | 6                    | 2             | 1           | 7                   | 8        | 4        | 5        |                                             | M1 >                |
|                    | Rank Br                                                                                                                                                                                                                                                                                                 | reeder                                                                                               | 5        | 6                    | 4             | 1           | 8                   | 7        | 2        | 3        |                                             | M1                  |
|                    | $a d^2 = 4 + 0 + 4 + 0 + 1 + 1 + 4 + 4 = 18$ For finding the difference between<br>each of the ranks<br>and evaluating $a^2 d^2$                                                                                                                                                                        |                                                                                                      |          |                      |               |             |                     |          |          |          |                                             | M1                  |
|                    | $a d^2 = 18$                                                                                                                                                                                                                                                                                            |                                                                                                      |          |                      |               |             |                     |          |          |          |                                             | A1                  |
|                    |                                                                                                                                                                                                                                                                                                         | 6(18)                                                                                                |          |                      |               |             | Fo                  | or use o | of the c | orrect f | formula with their $\operatorname{d}^2 d^2$ | dM1;                |
|                    | $r_{\rm S} = 1 - \frac{1}{800}$                                                                                                                                                                                                                                                                         | $(8^2 - 1)$                                                                                          | ;= 0.78  | 357142               | .9            |             |                     |          |          |          | $\frac{11}{14}$ or awrt 0.786               | A1                  |
|                    |                                                                                                                                                                                                                                                                                                         |                                                                                                      |          |                      |               |             |                     |          |          |          |                                             | [5]                 |
| (b)                | $H_0: \Gamma = 0, H_1: \Gamma > 0$ Both hypotheses stated correctly                                                                                                                                                                                                                                     |                                                                                                      |          |                      |               |             |                     |          |          |          | · · · · · · · · · · · · · · · · · · ·       | B1                  |
|                    | Critical Value = 0.8333 or CR: $r_{\rm S} \ge 0.8333$ Critical value of 0.8333                                                                                                                                                                                                                          |                                                                                                      |          |                      |               |             |                     |          |          | B1       |                                             |                     |
|                    | Since $r_s = 0.7857$ does not lie in the CR<br>(or $0.7857 < 0.8333$ ), do not reject H <sub>0</sub> see notes                                                                                                                                                                                          |                                                                                                      |          |                      |               |             |                     |          |          |          | M1                                          |                     |
|                    | <ul> <li>Either conclude that</li> <li>the <u>breeder does not</u> have the ability to correctly <u>order parrots</u> by age, after examining them.</li> <li>there is <u>insufficient evidence</u> that the <u>breeder</u> can correctly <u>order parrots</u> by age.</li> </ul>                        |                                                                                                      |          |                      |               |             |                     |          |          | A1ft     |                                             |                     |
|                    |                                                                                                                                                                                                                                                                                                         |                                                                                                      |          |                      |               |             |                     |          |          |          | [4]                                         |                     |
|                    | Notes                                                                                                                                                                                                                                                                                                   |                                                                                                      |          |                      |               |             |                     |          |          |          | 9                                           |                     |
| (a)                | 1 <sup>st</sup> M1                                                                                                                                                                                                                                                                                      | Atten                                                                                                | npt to r | ank fo               | r actua       | lages       | or bree             |          |          | es of ag | es. (At least 4 correct in e                | ither row-          |
|                    | 2 <sup>nd</sup> M1<br>3 <sup>rd</sup> dM1                                                                                                                                                                                                                                                               | Indep                                                                                                |          | t of 1 <sup>st</sup> | M1 bu         |             | must b<br>of 1<br>8 |          |          | their a  | $\overset{\circ}{\ni} d^2.$                 |                     |
| (b)                | $\begin{vmatrix} 2 & \text{IVII} \\ 3^{\text{rd}}  d\text{M1} \\ 1^{\text{st}}  \text{B1} \end{vmatrix} \text{ is dependent on } I^{\text{st}}  MI \text{ for use of } 1 - \frac{6(18)}{8(8^2 - 1)} \text{ with their } \mathring{a}  d^2.$ Both hypotheses correct in terms of $r$ or $r_{\text{s}}$ . |                                                                                                      |          |                      |               |             |                     |          |          |          |                                             |                     |
|                    | 2 <sup>nd</sup> B1                                                                                                                                                                                                                                                                                      | Critical value of 0.8333                                                                             |          |                      |               |             |                     |          |          |          |                                             |                     |
|                    | M1                                                                                                                                                                                                                                                                                                      | For a correct statement relating their $r_{s}( r_{s}  < 1)$ with their c.v. where their c.v. $  < 1$ |          |                      |               |             |                     |          |          |          |                                             |                     |
|                    | A1ft For a contextualised comment which is accepting H <sub>0</sub> , which must mention " <u>breeder</u> ", " <u>order</u> ", " <u>parrots</u> ", which conveys the idea that the breeder cannot order them correctly.<br>All previous marks in part (b) must have been scored to award this one.      |                                                                                                      |          |                      |               |             |                     |          |          |          |                                             | , " <u>order</u> ", |
|                    | <b>Note</b> Follow through their $r_s$ with 0.8333                                                                                                                                                                                                                                                      |                                                                                                      |          |                      |               |             |                     |          |          |          |                                             |                     |
|                    | Note                                                                                                                                                                                                                                                                                                    | Apply<br>So Av                                                                                       | ward S   | two-tai<br>SC B0     | <b>B1</b> for | $H_0: \rho$ | =0, 1               | H₁:ρ₹    |          | B1M1A    | A0 by critical value $r_s = (\pm)$          | 0.881               |
|                    |                                                                                                                                                                                                                                                                                                         | and a                                                                                                | llow ad  | ccess to             | o the M       | 11 marl     | k only.             |          |          |          |                                             |                     |

| Question<br>Number |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                             | Sch                                      | eme             |           |                                                                                                  | Marks                  |  |  |  |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------|-----------|--------------------------------------------------------------------------------------------------|------------------------|--|--|--|
| 2.                 | H <sub>0</sub> : There is no association between gender and (inspirational) message (independent)<br>H <sub>1</sub> : There is an association between gender and (inspirational) message (dependent)                                                |                                                                                                                                                                                                                             |                                          |                 |           |                                                                                                  |                        |  |  |  |
|                    |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                             | n                                        | C               |           | Some attempt at $(D = T + 1)$                                                                    |                        |  |  |  |
|                    | Expected                                                                                                                                                                                                                                            | A                                                                                                                                                                                                                           | B                                        | C               | Total     | (Row Total)(Column Total)                                                                        | M1                     |  |  |  |
|                    | Male                                                                                                                                                                                                                                                | 27.106                                                                                                                                                                                                                      | 41.373                                   | 38.52           | 107       | (Grand Total)                                                                                    |                        |  |  |  |
|                    | Female                                                                                                                                                                                                                                              | 29.893                                                                                                                                                                                                                      | 45.626                                   | 42.48           | 118       |                                                                                                  |                        |  |  |  |
|                    | Total                                                                                                                                                                                                                                               | 57                                                                                                                                                                                                                          | 87                                       | 81              | 225       |                                                                                                  | A1                     |  |  |  |
|                    | Observed                                                                                                                                                                                                                                            | Expected                                                                                                                                                                                                                    | $\frac{(O-E)^2}{E}$                      | $\frac{O^2}{E}$ |           | At least 2 correct terms for<br>$\frac{(O-E)^2}{E} \text{ or } \frac{O^2}{E} \text{ or correct}$ |                        |  |  |  |
|                    | 25                                                                                                                                                                                                                                                  | 27.11                                                                                                                                                                                                                       | 0.1642                                   | 23.054          |           | expressions with their $E_i$ .                                                                   | dM1                    |  |  |  |
|                    | 37                                                                                                                                                                                                                                                  | 41.37                                                                                                                                                                                                                       | 0.4616                                   | 33.091          |           | Accept 2 sf accuracy                                                                             |                        |  |  |  |
|                    | 45                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                             | 1.0901                                   | 52.570          |           | for the dM1 mark.                                                                                |                        |  |  |  |
|                    |                                                                                                                                                                                                                                                     | 38.52                                                                                                                                                                                                                       |                                          |                 |           | At least 5 correct                                                                               | +                      |  |  |  |
|                    | 32                                                                                                                                                                                                                                                  | 29.89                                                                                                                                                                                                                       | 0.1489                                   | 34.258          |           | $\frac{(O-E)^2}{E}$ or $\frac{O^2}{E}$ terms to                                                  |                        |  |  |  |
|                    | 50                                                                                                                                                                                                                                                  | 45.63                                                                                                                                                                                                                       | 0.4185                                   | 54.788          |           | E or $E$ terms to                                                                                | A1                     |  |  |  |
|                    | 36                                                                                                                                                                                                                                                  | 42.48                                                                                                                                                                                                                       | 0.9885                                   | 30.508          |           | either 1 dp or better.                                                                           |                        |  |  |  |
|                    |                                                                                                                                                                                                                                                     | Totals                                                                                                                                                                                                                      | 3.2718                                   | 228.271         | 8         | Allow truncation.                                                                                |                        |  |  |  |
|                    | $X^{2} = \mathring{O} \frac{(O - E)^{2}}{E} \text{ or } \mathring{O} \frac{O^{2}}{E} - 225 ;= \text{ awrt } 3.27 \qquad \mathring{O} \frac{(O - E)^{2}}{E} \text{ or } \mathring{O} \frac{O^{2}}{E} - 225$                                          |                                                                                                                                                                                                                             |                                          |                 |           |                                                                                                  |                        |  |  |  |
|                    | awrt <u>3.27</u>                                                                                                                                                                                                                                    |                                                                                                                                                                                                                             |                                          |                 |           |                                                                                                  |                        |  |  |  |
|                    | n = (2 - 1)(3 - 1) = 2 $n = 2$                                                                                                                                                                                                                      |                                                                                                                                                                                                                             |                                          |                 |           |                                                                                                  |                        |  |  |  |
|                    | $\chi_2^2(0.10) = 4$                                                                                                                                                                                                                                | $0) = 4.605 \implies CR: X^2 \ge 4.605 \qquad \qquad \underline{4.605}$                                                                                                                                                     |                                          |                 |           |                                                                                                  |                        |  |  |  |
|                    | [does not lie in the CR/not significant/Do not reject H <sub>0</sub> ]                                                                                                                                                                              |                                                                                                                                                                                                                             |                                          |                 |           |                                                                                                  |                        |  |  |  |
|                    | <ul> <li>Either conclude that</li> <li>there is <u>insufficient evidence to support</u> the <u>headteacher's belief</u>.</li> <li>there is no association between <u>gender</u> and inspirational <u>message</u>. (They are independent)</li> </ul> |                                                                                                                                                                                                                             |                                          |                 |           |                                                                                                  |                        |  |  |  |
|                    | ······································                                                                                                                                                                                                              |                                                                                                                                                                                                                             |                                          |                 |           |                                                                                                  |                        |  |  |  |
|                    |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                             |                                          |                 |           |                                                                                                  |                        |  |  |  |
|                    | Notes           1st B1         For both hypotheses. Must mention "gender" and "message" oe at least once.<br>Use of "relationship" or "correlation" or "connection" or "link" is B0.                                                                |                                                                                                                                                                                                                             |                                          |                 |           |                                                                                                  |                        |  |  |  |
|                    | 1 <sup>st</sup> M1                                                                                                                                                                                                                                  | M1 Can be implied by at least one correct $E_i$ to 1 d.p.                                                                                                                                                                   |                                          |                 |           |                                                                                                  |                        |  |  |  |
|                    |                                                                                                                                                                                                                                                     | <sup>st</sup> A1 At least 5 expected frequencies correct awrt or trunc. 2 d.p. [No fractions]                                                                                                                               |                                          |                 |           |                                                                                                  |                        |  |  |  |
|                    | $2^{nd} dM1$                                                                                                                                                                                                                                        | Dependent on 1 <sup>st</sup> M1 for at least 2 correct terms or correct expressions with their $E_i$                                                                                                                        |                                          |                 |           |                                                                                                  |                        |  |  |  |
|                    | and an air                                                                                                                                                                                                                                          | At least 5 correct terms to either 1 d.p. or awrt/trunc. 1.d.p. (may be implied by awrt 3.27)<br>Dependent on 2 <sup>nd</sup> M1 For applying either $\mathring{O} \frac{(O-E)^2}{E}$ or $\mathring{O} \frac{O^2}{E}$ - 225 |                                          |                 |           |                                                                                                  |                        |  |  |  |
|                    |                                                                                                                                                                                                                                                     | Dependent o                                                                                                                                                                                                                 | n 2 <sup>nd</sup> M1 For                 | applying e      |           | a - E = a - 225                                                                                  |                        |  |  |  |
|                    |                                                                                                                                                                                                                                                     | If awrt 3.27 is seen (from a calculator) <b>without</b> the expected frequencies stated then award <b>special case</b> M0A0M1A1M1A1.                                                                                        |                                          |                 |           |                                                                                                  |                        |  |  |  |
|                    |                                                                                                                                                                                                                                                     | n = 2. This mark can be implied by a correct critical value of 4.605                                                                                                                                                        |                                          |                 |           |                                                                                                  |                        |  |  |  |
|                    |                                                                                                                                                                                                                                                     | 4.605 or ft th                                                                                                                                                                                                              |                                          | 1 0             |           |                                                                                                  |                        |  |  |  |
|                    | 4 <sup>th</sup> A1                                                                                                                                                                                                                                  | Dependent o<br>Must mentio                                                                                                                                                                                                  | n 3 <sup>rd</sup> M1 and<br>n either "he | adteacher'      | s belief" | ntextualised conclusion which is accept or "gender" <i>and</i> "message".                        | oting H <sub>0</sub> . |  |  |  |
|                    |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                             |                                          |                 |           | nificant, do not reject H <sub>0</sub> "                                                         |                        |  |  |  |
|                    |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                             |                                          |                 |           | but <b>not</b> "correlation".                                                                    |                        |  |  |  |
|                    | Note                                                                                                                                                                                                                                                | Hypotheses t                                                                                                                                                                                                                | the wrong way                            | y round is      | AU        |                                                                                                  |                        |  |  |  |

| Question<br>Number |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Scheme                                                                                                                                    | Marks |  |  |  |  |  |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|--|--|--|
| <b>3.</b> (a)      | $H_0: m = 30$ $H_1: m^{-1} 30$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                           |       |  |  |  |  |  |
|                    | $z = \frac{28.2 - 30}{\frac{8.5}{\sqrt{-5}}}; = -1.833936$ $\pm \frac{28.2 - 30}{\frac{8.5}{\sqrt{75}}} \text{ or equivalent.}$                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                           |       |  |  |  |  |  |
|                    | $\sqrt{7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 75 awrt -1.83                                                                                                                             | A1    |  |  |  |  |  |
|                    | Two tailed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $1 \text{ c.v.'s } Z = \pm 1.6449$                                                                                                        |       |  |  |  |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $Z \le -1.6449$ or $Z \ge 1.6449$                                                                                                         | B1    |  |  |  |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = awrt 0.033 or awrt 0.034 < 0.05                                                                                                         |       |  |  |  |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /significant/Reject H <sub>0</sub> /"[0.033, 0.034]" < 0.05]                                                                              |       |  |  |  |  |  |
|                    | Conclude e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                           | A 1   |  |  |  |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | at the <u>mean age</u> of gym <u>customers</u> is <u>not 30</u> years.<br>at the <u>manager's claim</u> is <u>not correct</u> .           | A1    |  |  |  |  |  |
|                    | • 117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | at the <u>manager's claim</u> is <u>not concet</u> .                                                                                      | [5]   |  |  |  |  |  |
| (b)                | $\overline{X}$ is (app                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | roximately) normally distributed                                                                                                          | B1    |  |  |  |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                           | [1]   |  |  |  |  |  |
| (c)                | Assumed $s^2 = S^2$ or variance of sample = variance of population.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                           |       |  |  |  |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                           |       |  |  |  |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                           | 7     |  |  |  |  |  |
| (a)                | Notes       1 <sup>st</sup> B1     Both hypotheses correct.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                           |       |  |  |  |  |  |
|                    | M1For standardising with 28.2, 30 and $\frac{8.5}{\sqrt{75}}$ (or awrt 0.981) [Allow use of $8.5 \times \sqrt{\frac{74}{75}}$ (=awrt $2^{nd}$ B1Critical value of -1.6449 (compatible with sign of their test statistic) or a correct probability comparison. $2^{nd}$ A1Dependent on M1 scored for a correct contextualised comment which is rejecting H <sub>0</sub> white based on their z-value and their critical value with compatible signs, where $1.64 \le  c.v.  \le Contradictory statements score final A0. E.g. "significant, do not reject H0".$ |                                                                                                                                           |       |  |  |  |  |  |
|                    | <u>Alternative method for the "M1A1B1" marks</u> : Let $\overline{X}_{c}$ be the critical value of the sample mean.                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                           |       |  |  |  |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $= \frac{\overline{X}_{c} - 30}{\frac{8.5}{\sqrt{75}}}$ M1: For $\frac{c - 30}{\frac{8.5}{\sqrt{75}}} = -1.6449 / -1.645 / -1.64 / -1.65$ |       |  |  |  |  |  |
|                    | So $\overline{X}_C = 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A1: $\overline{X}_{C}$ = awrt 28.4<br>B1: Critical value of -1.6449                                                                       |       |  |  |  |  |  |
| Note               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>I test</b><br>ing a one-tailed test scores a maximum of B0M1A1B1A0<br>.2816 to score the 2 <sup>nd</sup> B1)                           |       |  |  |  |  |  |
| (b)                | Allow in words e.g "sample mean is normally distributed"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                           |       |  |  |  |  |  |
| (-)                | B1 Also allow $s = S$ or standard deviation of sample = standard deviation of population.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                           |       |  |  |  |  |  |

| Question<br>Number | Scheme                                                                                                                                                                                 |                |                |                             |                                                                                               |                             |                                |                               |  |  |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|-----------------------------|-----------------------------------------------------------------------------------------------|-----------------------------|--------------------------------|-------------------------------|--|--|
| <b>4.</b> (a)      | $\widehat{\lambda} = \frac{0(3)}{2}$                                                                                                                                                   | + 1(13) -      | + 2(14) + 3(   | (15) + 4(10)<br>80          | $\frac{50 + 4(10) + 5(8) + 6(8) + 7(6) + 8(3)}{80} \left\{ = \frac{280}{80} \right\} = 3.5 *$ |                             |                                |                               |  |  |
|                    |                                                                                                                                                                                        |                |                |                             |                                                                                               |                             |                                |                               |  |  |
| (b)                | $r = 80  \frac{e^{-3.5}(3.5)^3}{3!} \left\{ = 17.26283752 \right\} \text{ or } r = 80  (0.5366 - 0.3208) \left\{ = 17.264 \right\}$                                                    |                |                |                             |                                                                                               |                             |                                |                               |  |  |
|                    | $s = 80 - (2.42 + 8.46 + 14.80 + \text{their } r + 15.10 + 10.57 + 6.17 + 3.08) \left\{ = 2.14 \text{ or } 2.13716 \right\}$<br>or $s = 80^{-1} (1 - 0.9733) \left\{ = 2.136 \right\}$ |                |                |                             |                                                                                               |                             |                                |                               |  |  |
|                    | r – 17                                                                                                                                                                                 | 26 (2 dr       | b), $s = 2.14$ | (2 dn)                      | At least one                                                                                  | of either $r = awr$         | t17.26  or  s = awrt 2.14      | A1                            |  |  |
|                    | / - 1/.                                                                                                                                                                                | .20 (2uj       | (0), s = 2.14  | (2 <b>u</b> p)              |                                                                                               |                             | 17.26 and awrt $s = 2.14$      | A1                            |  |  |
|                    |                                                                                                                                                                                        |                |                |                             |                                                                                               |                             |                                | [3]                           |  |  |
| (c)                |                                                                                                                                                                                        |                |                | uitable moo<br>t a suitable |                                                                                               |                             |                                | B1                            |  |  |
|                    |                                                                                                                                                                                        |                |                | Comb                        | Comb                                                                                          | $(O E)^2$                   | $O^2$                          |                               |  |  |
|                    | #<br>calls                                                                                                                                                                             | $O_{i}$        | $E_{i}$        | $O_i$                       | $E_i$                                                                                         | $\frac{(O_i - E_i)^2}{E_i}$ | $\frac{O_i^2}{E_i}$            |                               |  |  |
|                    |                                                                                                                                                                                        |                | 2.42           |                             |                                                                                               | $E_i$                       | E <sub>i</sub>                 |                               |  |  |
|                    | 0                                                                                                                                                                                      | <u>3</u><br>13 | 2.42<br>8.46   | 16                          | 10.88                                                                                         | 2.4094                      | 23.5294                        | M1                            |  |  |
|                    | $\frac{1}{2}$                                                                                                                                                                          | 13             | 14.80          | 14                          | 14.80                                                                                         | 0.0432                      | 13.2432                        |                               |  |  |
|                    | 3                                                                                                                                                                                      | 15             | 17.26          | 15                          | 17.26                                                                                         | 0.2959                      | 13.0359                        |                               |  |  |
|                    | 4                                                                                                                                                                                      | 10             | 15.10          | 10                          | 15.10                                                                                         | 1.7225                      | 6.6225                         |                               |  |  |
|                    | 5                                                                                                                                                                                      | 8              | 10.57          | 8                           | 10.57                                                                                         | 0.6249                      | 6.0549                         | M1                            |  |  |
|                    | 6                                                                                                                                                                                      | 8              | 6.17           | 8                           | 6.17                                                                                          | 0.5428                      | 10.3728                        |                               |  |  |
|                    | $\begin{array}{c} 7 \\ \geqslant 8 \end{array}$                                                                                                                                        | 6<br>3         | 3.08<br>2.14   | 9                           | 5.22                                                                                          | 2.7372                      | 15.5172                        |                               |  |  |
|                    | Totals 8.3759 88.3759                                                                                                                                                                  |                |                |                             |                                                                                               |                             |                                |                               |  |  |
|                    | $X^{2} = \mathring{O} \frac{(O-E)^{2}}{E} \text{ or } \mathring{O} \frac{O^{2}}{E} - 80 ;= \text{ awrt } 8.38 \text{ awrt } \underline{8.38} \text{ or awrt } \underline{8.39}$        |                |                |                             |                                                                                               |                             |                                |                               |  |  |
|                    | n = 7 - 1 - 1 = 5                                                                                                                                                                      |                |                |                             |                                                                                               |                             |                                |                               |  |  |
|                    | $\chi_{5}^{2}(0.05) = 11.070 \implies CR: X^{2} \ge 11.070$                                                                                                                            |                |                |                             |                                                                                               |                             |                                |                               |  |  |
|                    |                                                                                                                                                                                        |                |                |                             |                                                                                               |                             |                                |                               |  |  |
|                    | [not in the CR/not significant/Do not reject $H_0$ ]                                                                                                                                   |                |                |                             |                                                                                               |                             |                                |                               |  |  |
|                    | Poisson distribution is a <u>suitable model</u> . (oe)                                                                                                                                 |                |                |                             |                                                                                               |                             |                                |                               |  |  |
|                    |                                                                                                                                                                                        |                |                |                             |                                                                                               |                             |                                | [7]<br>11                     |  |  |
|                    |                                                                                                                                                                                        |                |                |                             | Not                                                                                           | es                          |                                |                               |  |  |
| (a)                | B1cso*                                                                                                                                                                                 | At le          | ast 2 non-ze   | ero products                |                                                                                               | vide by 80 to ach           | ieve 3.5*                      |                               |  |  |
| (c)                | 1 <sup>st</sup> B1                                                                                                                                                                     |                |                | • •                         |                                                                                               |                             | ce. Inclusion of 3.5 for       | / in is 1 <sup>st</sup> B0    |  |  |
|                    | $1^{st} M1$                                                                                                                                                                            |                |                |                             |                                                                                               | s at both ends [ft          |                                |                               |  |  |
|                    | $2^{nd} M1$                                                                                                                                                                            |                |                |                             |                                                                                               |                             | ions/values (to awrt/trun      | cated 2 d.p.)                 |  |  |
|                    | 1 <sup>st</sup> A1<br>2 <sup>nd</sup> B1ft                                                                                                                                             |                |                |                             | s implies the b                                                                               |                             | btract 2 from their <i>n</i> . |                               |  |  |
|                    | $3^{rd}$ B1ft                                                                                                                                                                          |                |                |                             | -                                                                                             |                             |                                | 502 14 067                    |  |  |
|                    |                                                                                                                                                                                        |                |                | 10                          |                                                                                               |                             | r n. (May see 9.488, 12.:      | <i>172</i> , 14.00 <i>1</i> ) |  |  |
|                    | 2 <sup>nd</sup> A1                                                                                                                                                                     | -              |                |                             |                                                                                               | onclusion which i           |                                |                               |  |  |
|                    | <b>Note</b> No follow through on their hypotheses if they are stated the wrong way round.                                                                                              |                |                |                             |                                                                                               |                             |                                |                               |  |  |
|                    | Note                                                                                                                                                                                   |                |                |                             |                                                                                               |                             | ot reject Ha"                  |                               |  |  |

| Question<br>Number |                                                                                                                                                                                                      | Scheme                                                                                                        | Marks    |  |  |  |  |  |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------|--|--|--|--|--|
| <b>5.</b> (a)      | •                                                                                                                                                                                                    | ters 1 – 452, intermediates 1 – 251, professionals $1 - 97$                                                   | M1       |  |  |  |  |  |
|                    |                                                                                                                                                                                                      | <u>numbers</u> to select a<br>om sample of <u>28 beginners, 16 intermediates</u> and <u>6 professionals</u> . | M1<br>A1 |  |  |  |  |  |
|                    | Simple rando                                                                                                                                                                                         | sin sample of <u>28 beginners</u> , <u>10 intermediates</u> and <u>6 professionals</u> .                      | [3]      |  |  |  |  |  |
| (b)                | Any one of                                                                                                                                                                                           |                                                                                                               |          |  |  |  |  |  |
|                    |                                                                                                                                                                                                      | bles estimation of statistics/sampling errors for each strata.                                                | B1       |  |  |  |  |  |
|                    |                                                                                                                                                                                                      | ces variability.<br>e representative of the population/reflects population structure                          | [1]      |  |  |  |  |  |
| (c)                |                                                                                                                                                                                                      | = 3 $H_1: m_1 - m_B > 3$                                                                                      | B1; B1   |  |  |  |  |  |
| (0)                | Г                                                                                                                                                                                                    |                                                                                                               | D1, D1   |  |  |  |  |  |
|                    | s.e. = $\sqrt{\frac{38.1}{60}}$                                                                                                                                                                      | $+\frac{57.3}{80} \left\{= 1.162432794\right\}$                                                               | M1       |  |  |  |  |  |
|                    | - 36.9 -                                                                                                                                                                                             | $\frac{31.7 - 3}{624}$ ; = 1.89258 awrt 1.89                                                                  | dM1;     |  |  |  |  |  |
|                    | "1.1                                                                                                                                                                                                 | <u>624"</u> , = 1.892.38<br>awrt <u>1.89</u>                                                                  | A1       |  |  |  |  |  |
|                    |                                                                                                                                                                                                      | v. $Z = 1.6449$ or CR : $Z \ge 1.6449$ or p-value = awrt 0.029 < 0.05                                         | B1       |  |  |  |  |  |
|                    | ~                                                                                                                                                                                                    | gnificant/Reject H <sub>0</sub> /"0.029" < 0.05]                                                              |          |  |  |  |  |  |
|                    | Conclude eit                                                                                                                                                                                         |                                                                                                               | A1       |  |  |  |  |  |
|                    | <ul> <li><u>mean score</u> of <u>intermediates</u> is more than <u>3 greater</u> than the <u>mean score</u> of <u>beginners</u>. (oe)</li> <li><u>manager</u>'s belief is <u>correct</u>.</li> </ul> |                                                                                                               |          |  |  |  |  |  |
|                    |                                                                                                                                                                                                      |                                                                                                               | [7]      |  |  |  |  |  |
|                    |                                                                                                                                                                                                      |                                                                                                               | 11       |  |  |  |  |  |
|                    | <u>Alternative method for "2<sup>nd</sup>M1, 1<sup>st</sup> A1, 3<sup>rd</sup> B1" marks:</u> Let $D = \overline{x}_I - \overline{x}_B$                                                              |                                                                                                               |          |  |  |  |  |  |
|                    | $1.6449 = \frac{D-3}{1.1624}$ dependent upon the 1 <sup>st</sup> M1 for<br>D-3 $-1.6440/1.645/1.64/1.65$                                                                                             |                                                                                                               |          |  |  |  |  |  |
|                    | $\frac{D-3}{\text{their "1.1624"}} = \frac{1.6449}{1.645} / 1.645 / 1.64 / 1.65$                                                                                                                     |                                                                                                               |          |  |  |  |  |  |
|                    | So, $D = 4.912$ $D = awrt 4.91$ and $D_{obs} = 5.2$                                                                                                                                                  |                                                                                                               |          |  |  |  |  |  |
|                    | $D_{\rm obs} = 36.9 - 31.7 = 5.2$ [1.64, 1.65]                                                                                                                                                       |                                                                                                               |          |  |  |  |  |  |
| <b></b>            |                                                                                                                                                                                                      |                                                                                                               |          |  |  |  |  |  |
| (a)                | 1 <sup>st</sup> M1                                                                                                                                                                                   | Notes           for a suitable numbered/labelled list for each ability level                                  |          |  |  |  |  |  |
| (a)                | $2^{nd} M1$                                                                                                                                                                                          | for use of random numbers/sample to select beginners, intermediates and profession                            | nals.    |  |  |  |  |  |
|                    | A1                                                                                                                                                                                                   | (dependent on either the 1 <sup>st</sup> or the 2 <sup>nd</sup> M1 mark)                                      |          |  |  |  |  |  |
|                    | 1 21 1 1                                                                                                                                                                                             | For <u>28 beginners</u> , <u>16 intermediates</u> and <u>6 professionals</u> .                                |          |  |  |  |  |  |
| (c)                | 1 <sup>st</sup> B1                                                                                                                                                                                   | $H_0: m_1 - m_B = 3 \text{ oe}$                                                                               |          |  |  |  |  |  |
|                    |                                                                                                                                                                                                      | $H_1: m_1 - m_B > 3$ oe                                                                                       |          |  |  |  |  |  |
|                    |                                                                                                                                                                                                      | If $m_1, m_2$ used then it must be clear which one refers to intermediates/beginners.                         |          |  |  |  |  |  |
|                    | 1 <sup>st</sup> M1                                                                                                                                                                                   | M1 s.e. = $\sqrt{\frac{38.1}{60} + \frac{57.3}{80}}$ . May be implied by s.e. = awrt 1.16                     |          |  |  |  |  |  |
|                    |                                                                                                                                                                                                      | Condone minor slips e.g. $\sqrt{\frac{38.1}{80} + \frac{57.3}{60}}$                                           |          |  |  |  |  |  |
|                    | 2 <sup>nd</sup> dM1                                                                                                                                                                                  | Dependent upon the $1^{st}$ M1. (follow through their s.e. if $1^{st}$ M1 mark has been award                 | ded)     |  |  |  |  |  |
|                    | 1 <sup>st</sup> A1                                                                                                                                                                                   | awrt 1.89                                                                                                     |          |  |  |  |  |  |
|                    | $3^{rd}$ B1 $1.64 \le  C.V.  \le 1.65$ (compatible sign with their test statistic) or a correct probability comparison.                                                                              |                                                                                                               |          |  |  |  |  |  |
|                    | 2 <sup>nd</sup> A1                                                                                                                                                                                   | Dep. on all M1 and B1 marks scored for contextualised comment which is rejecting                              | $gH_0$ . |  |  |  |  |  |

| Question<br>Number | Scheme                                                                                                        |                                                        |                      |    |     |  |  |  |
|--------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------|----|-----|--|--|--|
| <b>6.</b> (a)      | $\overline{x} = 230.5$                                                                                        | 5; 95% confidence limits for $m$ are                   |                      |    |     |  |  |  |
|                    | $230.5 \pm 1.96 - \frac{1.2}{\sqrt{5}}$ their $\overline{x} \pm z - \frac{1.2}{\sqrt{5}}$                     |                                                        |                      |    |     |  |  |  |
|                    |                                                                                                               | N3                                                     | <i>z</i> = 1.96      | B1 |     |  |  |  |
|                    | = (229.44815, 231.55185) = awrt(229.4, 231.6) At least one end-point is correct. Both end-points are correct. |                                                        |                      |    |     |  |  |  |
|                    |                                                                                                               |                                                        |                      |    |     |  |  |  |
|                    |                                                                                                               |                                                        |                      |    |     |  |  |  |
| (b)                | $\{ \text{Let } X =$                                                                                          | number of confidence intervals that <i>don't conta</i> | <b>in</b> <i>m</i> } |    |     |  |  |  |
|                    | ${So X \sim} B(20, 0.05)$                                                                                     |                                                        |                      |    |     |  |  |  |
|                    | ${P(X > 3)} = 1 - P(X \le 3) \text{ or } 1 - 0.9841$                                                          |                                                        |                      |    |     |  |  |  |
|                    | = 0.0159 awrt <u>0.0159</u>                                                                                   |                                                        |                      |    |     |  |  |  |
|                    |                                                                                                               |                                                        |                      |    | [3] |  |  |  |
|                    |                                                                                                               |                                                        |                      |    | 7   |  |  |  |
|                    |                                                                                                               | Notes                                                  |                      |    |     |  |  |  |
| (b)                | M1 Writing or using either $X \sim B(20, 0.05)$ or $Y \sim B(20, 0.95)$                                       |                                                        |                      |    |     |  |  |  |
|                    | <b>1</b> <sup>st</sup> A1 $1-P(X \le 3)$ or $1-0.9841$ or $P(Y \le 16)$ . Can be implied by the final answer. |                                                        |                      |    |     |  |  |  |
|                    | <b>2<sup>nd</sup> A1</b> awrt 0.0159                                                                          |                                                        |                      |    |     |  |  |  |
|                    |                                                                                                               |                                                        |                      |    |     |  |  |  |
|                    |                                                                                                               |                                                        |                      |    |     |  |  |  |
|                    |                                                                                                               |                                                        |                      |    |     |  |  |  |
|                    |                                                                                                               |                                                        |                      |    |     |  |  |  |

| Question<br>Number | Scheme                                                                                                                                                                                                                                          | Marks     |  |  |  |  |  |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|--|--|--|--|
| <b>7.</b> (a)      | $A = \frac{X_1 + X_2 + X_3 + Y_1 + Y_2}{5},  X \sim N(30, 4.5^2),  Y \sim N(20, 3.5^2);  X,  Y \text{ are independent.}$                                                                                                                        |           |  |  |  |  |  |
|                    | $E(A) = \frac{3(30) + 2(20)}{5} \text{ or } Var(A) = \frac{3(4.5)^2 + 2(3.5)^2}{25} $ A correct method for finding E(A) or Var(A)                                                                                                               | M1        |  |  |  |  |  |
|                    | E(A) = 26  or  Var(A) = 3.41 $At least one of either E(A) = 26  or  Var(A) = 3.41$ $B = 4 E(A) = 26  or  Var(A) = 3.41$                                                                                                                         | A1        |  |  |  |  |  |
|                    | Both $E(A) = 26$ and $Var(A) = 3.41$                                                                                                                                                                                                            | A1        |  |  |  |  |  |
|                    | $\{\text{So } A \sim N(26, 3.41)\}$                                                                                                                                                                                                             |           |  |  |  |  |  |
|                    | $\left\{ P(A < 24) = \right\} P\left(Z < \frac{24 - 26}{\sqrt{3.41}}\right)$ Standardising $(\pm)$ with their mean and their standard deviation                                                                                                 | M1        |  |  |  |  |  |
|                    | = P(Z < -1.08306)                                                                                                                                                                                                                               |           |  |  |  |  |  |
|                    | = 1 - 0.8599                                                                                                                                                                                                                                    | M1        |  |  |  |  |  |
|                    | $= 0.1401 \text{ (or } 0.139391) \qquad 0.14 \text{ or awrt } 0.140 \text{ or awrt } 0.139$                                                                                                                                                     | Al        |  |  |  |  |  |
|                    |                                                                                                                                                                                                                                                 | [6]       |  |  |  |  |  |
| (b)                | $W \sim N(m, 2.8^2)$ ; $P(W - X < 4) = 0.1 W$ , X are independent.                                                                                                                                                                              |           |  |  |  |  |  |
|                    | $\left\{ E(W - X) = E(W) - E(X) = m - 30 \right\} \bowtie E(W - X) = m - 30 \qquad E(W - X) = m - 30$                                                                                                                                           |           |  |  |  |  |  |
|                    | $\left\{ \operatorname{Var}(W - X) = \right\} 2.8^2 + 4.5^2 \left\{ = 28.09 \right\} $ 2.8 <sup>2</sup> + 4.5 <sup>2</sup>                                                                                                                      | M1        |  |  |  |  |  |
|                    | $\{So W - X \ N(m-30, 28.09)\}$                                                                                                                                                                                                                 |           |  |  |  |  |  |
|                    | $\left\{ P(W - X < 4) = 0.1 \right\} \implies P\left( Z < \frac{4 - (M - 30)}{\sqrt{2.8^2 + 4.5^2}} \right) = 0.1$                                                                                                                              |           |  |  |  |  |  |
|                    | Standardising $(\pm)$ with their mean which is in terms of $M$                                                                                                                                                                                  |           |  |  |  |  |  |
|                    | $\frac{4 - (m - 30)}{\sqrt{2.8^2 + 4.5^2}} = k \ (= -1.2816)$ and their standard deviation and setting the result equal to $\frac{k}{k}, \text{ where }  k  \text{ is in the interval } [1.28, 1.29].$ $\pm 1.2816 \text{ or awrt } \pm 1.2816$ |           |  |  |  |  |  |
|                    |                                                                                                                                                                                                                                                 |           |  |  |  |  |  |
|                    | Correct equation . See notes                                                                                                                                                                                                                    | A1        |  |  |  |  |  |
|                    | $\{ m = 34 + 1.2816(5.3) \triangleright \} m = 40.792(= 40.784 \text{ from using } -1.28) $ awrt <u>40.8</u>                                                                                                                                    | A1        |  |  |  |  |  |
|                    |                                                                                                                                                                                                                                                 | [6]<br>12 |  |  |  |  |  |
|                    | Notes                                                                                                                                                                                                                                           |           |  |  |  |  |  |
| (a)                | $3^{rd}$ M1 For a probability tail compatible with 24 and their mean $A = \text{their } F(W = X)$                                                                                                                                               |           |  |  |  |  |  |
| (b)                | 2 <sup>nd</sup> M1 Allow $\pm \frac{4 - \text{their } E(W - X)}{\sqrt{\text{their } Var(W - X)}} = k$ , where $ k $ is in the interval [1.28, 1.29]                                                                                             |           |  |  |  |  |  |
|                    | 2 <sup>nd</sup> B1 For either -1.2816 or 1.2816                                                                                                                                                                                                 |           |  |  |  |  |  |
|                    | 1 <sup>st</sup> A1 E.g. Allow $\frac{4 - (m - 30)}{\sqrt{2.8^2 + 4.5^2}} = [-1.29, -1.28]$ or $\frac{(m - 30) - 4}{\sqrt{2.8^2 + 4.5^2}} = [1.28, 1.29]$                                                                                        |           |  |  |  |  |  |

| Question<br>Number |                                                   | Scheme                                                                                                                                                             | Marl    | KS . |
|--------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------|
| 8.                 | X follows                                         | s a continuous unform distribution over $\left[ \partial + 3, 2\partial + 9 \right];  Y = \frac{2\overline{X}}{3} + k$                                             |         |      |
| (a)                | $\left\{ \mathrm{E}(\overline{X}) = \right.$      | $\mathcal{M} = \frac{2\mathcal{A} + 9 + \mathcal{A} + 3}{2}$                                                                                                       | M1      |      |
|                    |                                                   | $= \frac{3\partial}{2} + 6 \text{ or } \frac{3\partial + 12}{2} + \partial \cdot \{\text{So } \overline{X} \text{ is a biased estimator.}\}$                       | A1      |      |
| (b)                | bias {=                                           | $\frac{3\partial}{2} + 6 - \partial = \frac{1}{2}\partial + 6 \text{ or } \frac{\partial + 12}{2} \text{ (allow } \pm\text{)}$                                     | B1ft    | [2]  |
| (c)                | $\begin{cases} E(Y) = \end{array}$                | $\frac{2}{3}E(\overline{X}) + k = \Im \Longrightarrow \left\{ \begin{array}{c} \frac{2}{3}\left(\frac{3\Im}{2} + 6\right) + k = \Im \end{array} \right\}$          | M1      | [1]  |
|                    |                                                   | $k = a \triangleright \} k = -4 \qquad \qquad k = -4$                                                                                                              | A1      |      |
|                    | (                                                 |                                                                                                                                                                    |         | [2]  |
| (d)                | $\begin{cases} \hat{a} = \frac{2}{3} \end{cases}$ | $\overline{X} - 4 \implies \left\{ \hat{a} = \frac{2}{3}(7.8) - 4 \right\} = 1.2 $                                                                                 | M1      |      |
|                    | Max valu                                          | e = 2(1.2) + 9                                                                                                                                                     | M1      |      |
|                    |                                                   | = 11.4 or $11\frac{2}{5}$ or $\frac{57}{5}$                                                                                                                        | A1      |      |
|                    |                                                   |                                                                                                                                                                    |         | [3]  |
|                    |                                                   | Notes                                                                                                                                                              |         | 8    |
| (a)                | M1                                                | Using the formula $\left(\frac{b+a}{2}\right)$ or obtaining $\frac{3a+12}{2}$ or $\frac{3a}{2}+6$                                                                  |         |      |
|                    | A1                                                | $\frac{3a}{2} + 6$ or $\frac{3a+12}{2}$ and $^{1}a$ .                                                                                                              |         |      |
| (b)                | B1ft                                              | bias = $\pm \left(\frac{1}{2}\partial + 6\right)$ or $\pm \left(\frac{\partial + 12}{2}\right)$ or ft their $\mu$ provided $\mu \neq \alpha$                       |         |      |
| (c)                | M1                                                | Sets $\frac{2}{3}$ (their E( $\overline{X}$ )) + k = $\partial$ . This mark can be implied.                                                                        |         |      |
|                    | A1                                                | k = -4. Note that $k = -4$ with no working is M1 (implied) A1.                                                                                                     |         |      |
| (d)                | 1 <sup>st</sup> M1                                | An attempt to use the sample data given to find $\frac{2}{3}\overline{x}$ + "their k".                                                                             |         |      |
|                    |                                                   | Allow full expression for $\overline{x}$ or $\frac{\sum x}{n}$ . (Note that from the data $\overline{x} = 7.8$ )                                                   |         |      |
|                    | 2 <sup>nd</sup> M1                                | 2 ` "their $a$ " + 9 where their $a$ is a function of the sample mean – which has been for applying $\frac{\sum x}{n}$ from the data values given in the question. | ound by |      |
|                    | A1                                                | 11.4 cao                                                                                                                                                           |         |      |
|                    | Note                                              | 2(10.6) + 9 = 30.2 is M0M0A0                                                                                                                                       |         |      |

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom