

Mark Scheme (Final)

Summer 2015

Pearson Edexcel International A Level in Statistics 3 (WST03/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2015 Publications Code IA042726 All the material in this publication is copyright © Pearson Education Ltd 2015

General Marking Guidance

• All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

• Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.

• Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.

• There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.

• All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

• Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

• Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- _ or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

	June 2015	
WST03	Statistics 3 Mark Scheme	•

Question Number	Scheme	Marks
1. (a)	$\{w\} = 018 \text{ or } 18$ 018 or 18	B1
		[1]
(b)	${x} = 18$ 18	B1
		[1]
(c)	${\text{prob}} = 0$	B1
		[1]
(d)	Advantage: Any one of:	
	• <u>Simple or easy</u> to use also allow "quick" or "efficient" (o.e.)	
	• It is suitable for large samples (or populations)	B1
	• Gives a good spread of the data	
	Disadvantage: Any one of:	
	• The alphabetical list is (probably) <u>not random</u>	
	• <u>Biased</u> since the list is not (truly) random	B1
	• <u>Some combinations</u> of names are <u>not possible</u>	
		[2]
		(Total 5)
	Notes	
(d)	If no labels are given treat the 1 st reason as an advantage and the 2 nd as a disadvantage 1 st B1: for advantage 2 nd B1: for disadvantage "it requires a sampling frame" is 2 nd B0 since the alphabetical list is given.	e
	Note: Do not score both B1 marks for opposing advantages and disadvantages.	

Question					Schem	e						Marks
Number		Α	B	C	L	N	R	S	Т	Y		
2. (a)	Judge 1	6	3	4	9	2	8	1	5	7		
	Judge 2	8	4	5	7	3	9	1	2	6		
	or											M1
		S	Ν	В	С	Т	Α	Y	R	L		
	Judge 1	1	2	3	4	5	6	7	8	9		
	Judge 2 $\sum 1^2$	1	3	4	5	2	8	6	9	7		N/1
	$\sum d^2 = 4 + $	1+1+	4 + 1 +	-1 + 0	+9+1	L					$\sum l^2$ 22	
	(or 0 +	1+1+	1 + 9	+ 4 + 1	+1+4	4 = 22				$\sum a = 22$	Al
												M1.
	$r = 1 - \frac{6(22)}{2}$	$\frac{2}{2}$: = 0).81666	66							49	IVII,
	·s 1 9(80)), (00							$\frac{49}{60}$ or awrt 0.817	A1
											00	[5]
(b)	$\mathbf{H}_{0}: \boldsymbol{\rho} = 0 ,$	$\mathrm{H_{1}:}\rho$	> 0									B1
	Critical Valu	ie = 0.7	'833 <u>or</u>	CR:	$r_s \ge 0$.7833					0.7833	B1
	Since $r_s = 0$.	8166	it lies	in the	CR, <u>c</u>	<u>or</u> reje	ct H ₀	(o.e.)				M1
	The two judg	<u>ges</u> (or	"they")	are ir	agreer	<u>ment</u>	<u>or</u>		_			A1ft
	there is a pos	sitive c	orrelation	on bet	ween th	ne rank	s of th	e two j	udges.			[/1]
												(Total 9)
	Notes											
(a)	1 st M1 for a	in atten	npt to ra	ink at	least or	ne row	(at lea	st 4 co	rrect)			
	2^{nd} M1 for a	n atten	npt at d	² row	(may b	e impli	ed by s	sight of	f $\sum d^2$	= 22 o	or 221 for reverse ranks	5)
	1 st A1 for	$\sum d^2 =$	= 22 (01	: 221 i	f rever	se rank	ting is	used) (Can be	implied	d by correct answer.	
	3^{rd} M1 for u	use of t	he corre	ect for	mula w	ith the	eir $\sum a$	2 (if it	is clea	rly stat	ed)	
	If the	he ansv	ver is n	ot cor	rect the	n a coi	rect ex	pressio	on is re	quired		
False	eg Alphabe	etic ran	king [.] G	ives	Judge	1. 7	523	8 1	964			
Ranking	e.g mphuo		king. e		Judge	2: 7	8.5	239	416	Σ	$d^2 = 162$ and $r =$	-0.35
	Saamaa MO	(f	1-i	M1(f.			12	<u> </u>	. 1 (for		$\int dt \sin \sum d^2 = \Lambda 0 \text{i}$	2 and of 5
	Scores: MU	(for rai	iking), I	M 1(10	r atten	ipt at <i>c</i>	<i>i</i> row)	, AU, 1	VII (101	use of	t their $\sum a$), A0 1.0	e. 2 out of 5
					Ca	n follo	w thro	igh the	eir r_s i	n (b)		
(b)	1 st B1 for bo	oth hyn	otheses	stated	l correc	tly in t	erms c	f a (all	ow a	H. m	ust be compatible with	ranking
	2^{nd} B1 for cv	v = 0.78	333 (ind	enend	lent of t	heir H	$\frac{1}{1}$ (no 2	-tail va	lue in t	tables)	but compatible sign w	with their r)
	M1: for a co	orrect s	tatemer	t (in y	words)	relatin	o their	r with	their o	critical	value	
	e.g. "re	eiect H.	"."in c	ritical	region'	'. "sig	nifican	t". "po	sitive of	correlat	tion"	
	May be	e implie	ed by a	correc	t conte	, sig	comme	nt.				
cv >1	If their	cv is c	v > 1 (often	from us	ing no	rmal ta	bles) a	ward N	/10A0		
	If their	$ r_{s} > r_{s} $	their cv	v then	"signit	ficant"	(o.e.) 1	for M1	and "j	udges a	are in <u>agreement</u> " (o.e.) for A1ft
	If their	$ r_{s} < r_{s} $	their cv	v then	"not si	gnifica	ant" (o	e.) for	M1 an	d " <u>jud</u> g	ges don't <u>agree</u> " (o.e.)	for A1ft
	A1ft: for a c	correct	follow	throug	gh conc	lusion	in cont	ext.				
	"posi	tive co	rrelatio	n" alo	ne scor	es M1	A0					
	For r	everse	ranking	shou	ld still s	say" ji	idges <u>a</u>	<u>re</u> in a	greeme	ent"		

Question Number	Scheme											
3. (a)	$\widehat{\lambda} = \frac{0(47) + 1(57) + 2(46) + 3(35) + 4(9) + 5(6)}{200} = \frac{320}{200} = 1.6 \text{ * Full exp' or at least 2} \text{ products and } 320/200 \text{ seen}$											
(b)	$r = 200 \times \frac{e^{-1.6}(1.6)^2}{2!} \left\{ = 51.68550861 \right\}$ Using $r = 200 \times \frac{e^{-1.6}(1.6)^2}{2!}$											
	$s = 200 - (40.38 + 64.61 + \text{their } r + 27.57 + 11.03) \{= 4.72449139\}$ or their $r + s = 56.41$											
	r = 51.685508	361 and $s =$	= 4.72449139)	r = awrt	51.69 and s	s = awrt 4.72	A1				
(c)	H · Poisson (distribution) i	s a suitable/s	sensible (mod	- 1)				[3]			
	H_0 : Poisson (H_1 : Poisson (distribution)	is not a suitable	ole/ sensible (not	nodel).			B1				
	Number of	Observed	Expected	Combined	Combined	$(O-E)^2$	O^2					
	accidents	47	40.29	Observed 47	Expected	E	E 547052					
		47	40.38	47	40.38	1.0853	54.7053					
	2	46	51.69	46	51.69	0.8903	40 9364					
	3	35	27.57	35	27.57	2.0024	44.4324					
	4	9	11.03									
	≥ 5	6	4.72	15	15.75	0.0357	14.2857	M1				
					Totals	4.6461	204.6461					
	$\mathbf{\nabla}^2 = \mathbf{\nabla}^2 (0 - 0)$	$(E)^2$	$\neg O^2$	1 1 1				M1;				
	$X^2 = \sum \frac{1}{B}$	$\frac{1}{E}$ or \sum	$=\frac{1}{E}$ - 200	;= 4.6461			awrt 4.65	A1				
	v = 5 - 1 - 1 =	3					3	B1 ft				
	$\chi_3^2(0.10) = 6.2$	$251 \Rightarrow CR:$	$X^2 \ge 6.251$				6.251	B1 ft				
	[Since $X^2 = 4$.	.6461 does no	ot lie in the C	R, then there is	s insufficient	evidence to r	eject H ₀]					
	The number of the <i>supervisor</i>	<i>accidents</i> pe 's belief is con	r day can be i rrect.	modelled by a	Poisson distri	bution or		A1 ft				
	-								[7]			
(b)	Note: Allow	$v \Delta 1$ for $s - s$	awrt 4 74 (fo	und as a result	of using expe	ected values t	o full accuracy	<i>y</i>)				
(0)	1^{st}B1 for b	with hypothes	a and montic	ning Poisson	of using expo							
(C)	Allor	<u>w Poisson is </u>	es and mentic	odel" but not "	good method	,,						
	Inclu	ision of 1.6 fc	or mean in hy	potheses is B0	but condone	in conclusion	l.					
	1 st M1: For a	n attempt to p	bool 4 accider	ts and ≥ 5 ac	cidents <u>or</u> poo	ol when $E_i < 3$	5 No pooling	is M0				
	2^{nd} M1: For a	n attempt at t	he test statisti	c, at least 2 co	rrect expressi	ons/values (te	o awrt 2 d.p.)					
	1^{st} A1: For a	wrt 4.65 (sco	re M1M1A1	if awrt 4.65 se	en)							
No pooling	If no	pooling can	allow 2 nd M1	if $X^2 = 5.33$ is	s seen		D1D1 marsha in					
	2 nd BIft: For	n - 1 - 1 1.e.	subtracting 2	2 from their <i>n</i> .			6.251 (if poolin	g) or 7.7	/ 79			
	3^{10} B1ft: For a	correct ft for	their $\chi_k^2(0.1)$	0), where $k =$	n-1-1 from	m their <i>n</i> .	for no pooling	6)				
	2^{nd} A1ft: (<i>Dep</i>	. on the 2^{nd} N	11) For corre	ect comment in	context base	d on their test	t statistic and t	heir crit	ical			
	valı	ue that mentio	ons <i>accidents</i>	or <i>supervisor</i> .	Condone me	ention of Po(1.6) in conclu	sion				
	Scoi	re A0 for inco	onsistencies e	.g. "significant	" followed by	"supervisor"	's belief is just α^2	ified"				
	Note: Full acc	curacy gives a	combined ex	spected frequent	ncy of 15.76,	$\frac{(O-E)^2}{E} = 0$	$0.0366, \frac{O^2}{E} = 1$	14.2766	,			
	$X^2 = 4.$	64855 and	p-value 0.199)								

Question Number	Scheme							
4. (a)	Let X = weight of a sack of potatoes, $X \sim N(25.6, 0.24^2)$							
		Attempt at D and $D \sim N(0,)$	M1					
	So $D = X_1 - X_2 \sim N(0, 2(0.24)^2)$ or $D \sim N(0, 0.1152)$	$(0.24)^2 + (0.24)^2$; 0.1152	A1; A1					
	$\left\{ P(D > 0.5) = \right\} 2 P(D > 0.5)$	$2 \times P(D > 0.5)$ can be implied	dM1					
	$= 2 \times P\left(Z > \frac{0.5}{\sqrt{0.1152}}\right)$		dM1					
	$= 2 \times P(Z > 1.4731) \underline{or} = 2(1 - 0.9292)$ = 0.1416	awrt 0 141 or awrt 0 142	Δ 1					
	- 0.1410	awit 0.141 01 awit 0.142	[6]					
(b)	Let Y = weight of an empty pallet, $Y \sim N(20.0, 0.32^2)$		[-]					
	So $T = X_1 + X_2 + \dots + X_{30} + Y$							
	$T = N(20/25, c) + 20 = 20/0, 24/2 + 0, 20^2$	30(25.6) + 20 <u>or</u> 788	B1					
	$I \sim N(30(25.6) + 20, 30(0.24)^2 + 0.32^2)$	$30(0.24)^2 + 0.32^2$	M1					
	$T \sim N(788, 1.8304)$	N and 1.8304 or awrt 1.83	A1					
	$\{P(T > 785) = \} P\left(Z > \frac{785 - 788}{5}\right)$		M1					
	$(\sqrt{1.8304})$							
	= P(Z > -2.21/4)	overt () () () ()	A 1					
	- 0.2000	awit 0.707	[5]					
			(Total 11)					
(-)	Notes		ord M(1)					
(a)	1 M1: For clear definition of D and normal distribution with 1 st A1: for correct use of Var($X - X$) formula	th mean of 0 (Can be implied by	5 MII)					
	$2^{\text{nd}} \Delta 1$: for 0.1152							
	2^{nd} dM1: For realising need $2 \times P(D > 0.5)$ (Dependent on 1	st M1 i.e. must be using suitable <i>L</i>))					
	3 rd dM1: Dep on 1st M1 for standardising with 0.5, 0 and their	It s.d.($\neq 0.24$)Must lead to P(Z >	(+ ve)(0.e.)					
	P(Z > 1.47) implies 1 st M1 1 st A1 2 nd A1 and 3 rd M1							
	Correct answer only will score 6 out of 6							
(b)	B1: For a mean of $30(25.6) + 20$. Can be implied by 78	38.						
~ /	1 st M1: For $30(0.24)^2 + 0.32^2$. Can be implied by 1.8304 or	awrt 1.83						
	Allow M1 for swapping error i.e. $30 \times 0.32^2 \pm 0.24^2$	2 if the expression is seen						
	1 st A1: For normal and correct variance of 1.8304 or awrt 1.85	3.						
	Normality may be implied by standardisation							
	2 nd M1: For standardising with 785 with their mean and st. de	ev($\neq 0.24$) Must lead to P(Z >	– ve) oe.					
	2 A1: awrt 0.987 Correct answer only will score 5 out of 5							
	Note: Calculator answers are (a) 0.14071, (b) 0.98670.							

Question Number	Scheme									
5.	H ₀ : Grades and gender are independent (or not associated)"grades" and "gender"H: Grades and gender are dependent (or associated)mentioned at least once.									
		una ¿		10 40	pendent (01 4				(-)
	Observe	d	Mal	e	Female	e		An attempt to convert percentages	M1	
	Distinctio	on	37		44			to observed frequencies.		
	Merit		127	1	96			All observed frequencies		
	Unsatisfact	ory	36		20			are correct.	A1	
	Evmosto	4	Mal		Famal		Totala	(Row Total)(Column Total)		
	Distinctio	u m	1VIai	e		5		(Grand Total)	M1	
	Marit 123.88				00 111		223	Can be implied by a correct E		
	Unsatisfact	orv	31.1	11	24 880)	56			
	Totals	Jory	200)	160	,	360	All expected frequencies are correct to nearest integer.	A1	
								At least 2 correct terms for		
	Observed	Fv	nected	(6	$(D - E)^2$		O^2	$\frac{(O-E)^2}{O}$ or $\frac{O^2}{O}$ or correct		
	Observed	LA	pecieu		Ε		Ε	$E \qquad E$	M1	
	37		45		1.422		30.422	expressions with their E_i .		
	44		36		1.778		53.778	Accept 2 st accuracy for the M1 mark		
	127	12	3.889		0.078		130.189	$(O - E)^2 = O^2$		
	96	99	9.111		0.098		92.987	All correct $\frac{(O - D)}{E}$ or $\frac{O}{E}$ terms to either 2 dp or better. Allow truncation.		
	36	3	1.111		0.768		41.657		A1	
	20	24	4.889 Tetele		0.960 5 104		16.0/1			
		-F	$\frac{10tais}{2}$		$\frac{5.104}{2}$	A 1				
	$X^2 = \sum \frac{1}{2} \frac{1}$	$\frac{-L}{E}$	– or	$\sum \frac{c}{d}$	$\frac{7}{E}$ - 360	;=	awrt 5.1	awrt 5.1	AI	(7)
	v = (3-1)(2	– 1)	= 2	2				(v =) 2 (Can be implied by 5.991)	B1	
	$\chi_2^2(0.05) = 5$	5.991	\Rightarrow CR:	X²	≥ 5.991			For 5.991 only	B1	
	Since $X^2 = 5$	5.1 d	oes not l	ie in	the CR, th	nen	there is ins	sufficient evidence to reject H_0	M1	
	There is no a	aies g ssoci	g <u>rades</u> a ation be	na <u>ge</u> twee	<u>ender</u> are 1 n Busines	inae s St	pendent udies grade	<u>or</u> es and gender. Or	A1ft	
	Head of depa	artme	<u>nt'</u> s (be	lief)	is correct		<u><u><u>a</u>na</u></u>	<u> </u>		(4)
									(Tot	[12] al 12)
	Notes									
	Final M1: For a correct statement linking their test statistic and their critical value (> 3.8) Note: Contradictory statements score M0 E g "significant do not reject H"									
	Final A1ft: I	For a	correct	ft sta	tement in	con	itext –			
	1	must	mention	"gra	ides" and	"ge	nder" or "s	ex" <u>or</u> "head of department"		
		Condo	one "rela There is	tions	ship" or "c vidence of	com Far	nection" he	between grades and gender"		
5.10 only	Just seei	ng 5.	10 onl	y car	n imply 1 st	^t 3 N	Ms but lose	s 1 st 3 As so can score 4 out of 7 (Qu says	s "shov	v")
	Note: Full a	COUR	acy give	- NG 3	$X^2 = 5.104$	1354	6 and n-1	value 0 0779		
	THUR, Full a	iccul	acy give	. 9 <i>1</i>	x = 5.10 ²	155	• and p-v			

Question Number	Scheme													
5.	Mark Scheme for candidates who use percentages instead of observed values.													
	H_0 : Grades and gender are independent (or not associated)"grades" and "gender" H_1 : Grades and gender are dependent (or associated)mentioned at least once.													
	Observe	Mal	e	Female	e		These modes connet he abtained							
	Distinction		18.5		27.5			These marks cannot be obtained.	MU AU					
	Merit		63.5	5	60.0									
	Unsatisfact	ory	18.0)	12.5									
	Some ottomut at													
	Expected	h	Mal	e	Female	<u>-</u>	Totals	(Row Total)(Column Total)						
	Distinctio	n n	23	•	23		46	(Grand Total)	M1					
	Merit		61.7	5	61 75		123.5	Can be implied by one of these E_{i} 's						
	Unsatisfact	orv	15.2	5	15 25		30.5							
	Totals	ory	100)	100		200	Expected frequencies are not correct.	A0					
	Observed Exp		pected	(6	$(D - E)^2$	$(-E)^2$ O^2		$\frac{(O-E)^2}{2} \text{ or } \frac{O^2}{2} \text{ or correct}$	t					
			1		E		E		M1					
	18.5		23	(0.8804	14	4.8804	expressions with their E_i .						
	27.5	23		0.8804		3	2.8804	for the M1 mark.						
	63.5	6	51.75	0.0496		65.2996								
	60.0	6	51.75	0.0496		5	8.2996							
	18.0		5.25	0.4959		2	1.2459	This mark cannot be obtained.	A0					
	12.5	1	5.25	0.4959		10	0.2459							
	Totals 2.8518 202.8518													
	$X^2 = \sum \frac{(O)}{(O)}$	$X^2 = \sum \frac{(O-E)^2}{E}$ or $\sum \frac{O^2}{E} - 360$; = 2.8518 This mark cannot be obtained.												
	v = (3-1)(2	- 1)	= 2					(v =) 2 (Can be implied by 5.991)	B1					
	$\chi^2_2(0.05) = 5$.991	\Rightarrow CR:	X^2	≥ 5.991			For 5.991 only	B1					
	Since $X^2 = 2$	2.86	does not	lie i	n the CR,	then	there is in	sufficient evidence to reject H_0	M1					
	Not available since comes from incorrect working.													
	Notes													
	They can get	B1 N	MOA0 M	lages	M1A0A0	an ob) B1H	B1M1A0.	iues then they can obtain a maximum of () marks.					

Question Number	Scheme	Marks
6. (a)	$\left\{\hat{\mu} = \frac{\sum x}{n} = \frac{1570}{50} = \right\} \ \bar{x} = 31.4 \qquad \bar{x} = 31.4$	B1 cao
	$\left\{\hat{\sigma}^2 = \frac{\sum x^2 - n\overline{x}^2}{n-1} = \right\} s_x^2 = \frac{49467.58 - 50(31.4)^2}{50 - 1}$	M1 A1ft
	= 3.460816 awrt 3.46	A1 [4]
(b)	[Let $Y =$ time taken to complete obstacle course in the afternoon.]	["
	$H_0: \mu_x = \mu_y, H_1: \mu_x > \mu_y$ "21 4" 30 0	B1
	$(z =) \frac{31.4 - 30.9}{\sqrt{\frac{"3.46"}{50} + \frac{3.03}{50}}}$	M1 A1ft
	= 1.38781 awrt 1.39	A1
	CR: $Z \ge 1.6449$ or probability = awrt 0.082 of awrt 0.083 1.6449 or better Since $z = 1.38781$ does not lie in the CR then there is insufficient evidence to reject H.	BI M1
	Conclude that the <u>mean time</u> to complete the obstacle course is the same for the early <u>morning</u>	A1
	and late <u>afternoon</u> .	[7]
(c)	\overline{X} and \overline{Y} are both approx. <u>normally distributed or</u> $\overline{X} - \overline{Y}$ normal (Condone \overline{x} and \overline{y})	B1
(b)	Have assumed $s^2 \sim \sigma^2$ or variance of sample \sim variance of population	[1]
	nave assumed s = 0 of variance of sample = variance of population	[1]
	Notes	(Total 13)
(a)	B1: 31.4 cao Allow 31 minutes, 24 seconds.	
	1 st A1ft: A correct expression for s^2 with their ft \overline{x} . 3 rd A1: awrt 3.46 (Correct answer scores 3 out of 3)	
(b)	1 st B1: Both hypotheses stated correctly, with some indication of which μ is which. Eg:	$\mu_{_M}$, $\mu_{_A}$
	1 st M1: For an attempt at $\frac{a-b}{\sqrt{\frac{c}{50} + \frac{d}{50}}}$ with at least 3 of <i>a</i> , <i>b</i> , <i>c</i> or <i>d</i> correct. Allow <u>+</u>	
	1 st A1ft: for $\pm \frac{\text{their } 31.4 - 30.9}{\sqrt{\frac{\text{their } 3.46}{50} + \frac{3.03}{50}}}$ Allow $D = \overline{x} - \overline{y}$ 1.64 ~ 1.65 $= \frac{D - 0}{\sqrt{\frac{"3.46"}{50} + \frac{3.03}{50}}}$ [SE = 0.2 nd A1: for awrt 1.39 (possibly \pm)(Allow for CV D = awrt 0.593) (NB d = 0.5)	.360277]
	Correct answer scores M1A1ftA1 <u>but</u> $0 - (31.4 - 30.9) \rightarrow -1.39$ loses this 2 nd A matrix	urk
	2^{nd} B1: Critical value of 1.6449 or better (seen). Allow for probability = awrt 0.082 or awrt 0. Note: p-values are 0.0823 (tables) and 0.0826 (calculator)	.083
	 2nd M1: For a correct statement linking their test statistic and their critical value. Note: Contradictory statements score M0. E.g. "significant, do not reject H₀". 	
	3 rd A1: For a correct statement in context that accepts H ₀ (no ft) Condone "no difference in me Must mention " <u>mean time</u> ", " <u>morning</u> " and " <u>afternoon</u> " or " <u>both times of day</u> "	an times"
(c)	B1 E.g. $\overline{X} \sim N()$ need both. Allow in words e.g "sample means are normally distributed	;"
(d)	B1 condone only mentioning "x" or "y" <u>but</u> watch out for $s_x = s_y$ or $\sigma_x = \sigma_y$ which scores	B0

Question Number	Scheme	Marks
7.	Let $X =$ score on a die	
(a)	E(S) = 3.5, Var(S) = $\frac{35}{12}$ E(S) = 3.5 Var(S) = $\frac{35}{12}$ or awrt 2.92	B1 B1
(b)	So, $\overline{S} \sim N\left("3.5", \frac{"\left(\frac{35}{12}\right)"}{40}\right)$ or $\overline{S} \sim N\left("3.5", \frac{7}{96}\right)$	[2] B1ft
	$P(\overline{S} < 3) = P\left(Z < \frac{3 - "3.5"}{\sqrt{\frac{7}{96}}}\right) \{= P(Z < -1.85164)\}$	M1
	$\{=1-0.9678\} = 0.0322$ 0.032 to 0.032	A1
		[3] (Total 5)
(-)	Notes	
(a)	2 B1 allow awn 2.92	
(b)	B1ft for $\overline{S} \sim N\left("3.5", \frac{"\left(\frac{35}{12}\right)"}{40}\right)$ seen or implied. Follow through their E(S) and their Var(S)	
	NB $\frac{7}{96} = 0.07291\dot{6}$ accept awrt 0.0729	
	M1 for an attempt to standardise with 3, their mean (>3) and $\sqrt{\frac{\text{their Var}(S)}{40}}$. Must lead to P A1 for 0.032 ~ 0.0322	(Z < -ve)
ALT ΣS	B1ft for $\sum S \sim N\left(140, \frac{350}{3}\right)$ where 140 is 40× their E(S) and variance is 40× their Var(S)	
	M1 for $P\left(Z < \frac{120 - "140"}{\sqrt{\frac{350}{3}}}\right)$ or $P\left(Z < \frac{119.5 - "140"}{\sqrt{\frac{350}{3}}}\right) \{= P(Z < -1.8979)\}$	
	A1 for 0.032~0.0322 or (with continuity correction) 0.0287 (tables) or 0.0289 (calculator).	

Question Number	Scheme	Marks
8. (a)	$\left\{\overline{x} = \frac{29.74 + 31.86}{2}\right\} \implies \overline{x} = 30.8$ This can be implied. See note.	B1
	"1.96" $\left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 - 30.8$ or $2("1.96") \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 - 29.74$	M1
	$SE_{\bar{x}} = \frac{31.86 - 30.8}{1.96} = 0.540816 = 0.54 (2dp)$ awrt 0.54	A1
(b)	A 90% CI for μ is $\overline{x} \pm 1.6449 \left(\frac{\sigma}{\sqrt{n}}\right)$	B1
	$= 30.8 \pm 1.6449(0.54) \qquad \qquad (\text{their } \overline{x}) \pm (\text{their } z)(\text{their } SE_{\overline{x}} \text{ from (a)})$	M1
	= (29.91, 31.69) (awrt 29.9 , awrt 31.7)	A1
(c)	Let $X =$ number of confidence intervals containing μ	[3]
	or $Y =$ number of confidence intervals not containing μ	
	So $X \sim Bin(4, 0.9)$ or $Y \sim Bin(4, 0.1)$	M1
	$P(X \ge 3) \text{ or } P(Y \le 1) = {}^{4}C_{3}(0.9)^{3}(0.1) + (0.9)^{4}$ ${}^{4}C_{3}(0.9)^{3}(0.1) + (0.9)^{4}$	A1 oe
	$= 0.2916 + 0.6561 = 0.9477 \qquad 0.9477 \text{ or } 0.948$	A1 [2]
		[3] (Total 9)
	Notes	
(a)	B1: $\overline{x} = 30.8 \text{ may be implied by } 1.96 \left(\frac{\sigma}{\sqrt{n}}\right) = [31.86 - 30.8] = 1.06 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 \text{ or } 2(1$.86 – 29.74
	M1: A correct equation for either a width or a half-width involving a <i>z</i> -value $1.5 \le z \le 2$	
	Eg: "their $z''\left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 - "30.8"$ ft their \overline{x} or $2("their z")\left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 - 29$	9.74
	or "their $z''(SE_{\overline{x}}) = 31.86 - "30.8"$ or $2("their z'')(SE_{\overline{x}}) = 31.86 - 29.74 are fine$	for M1.
	A1: 0.54 or awrt 0.54 Must be seen as final answer to (a) NB $\frac{53}{98}$ as final answer is A0	
	Condone $\overline{x} \pm 1.96\sigma =$ for B1 and M1 but A0 even if they say " σ = standard error = 0. Otherwise answer only of 0.54 scores 3 out of 3	.54"
(b)	B1 for use of 1.6449 or better in an attempt at a CI formula. Need at least 1.6449 (their SE M1 for attempt at CI ft their values and provided $1 \le z \le 1.7$	2)
(c)	M1: States or applies either $X \sim Bin(4, 0.9)$ or $Y \sim Bin(4, 0.1)$ Condone M1 for $0.9^4 + 0.9^3 \times 0.1$ (o.e.) 1 st A1: ${}^{4}C_{3}(0.9)^{3}(0.1) + (0.9)^{4}$ or $(0.9)^{4} + {}^{4}C_{1}(0.1)(0.9)^{3}$ oe	
	2 A1: 0.94// or 0.948	

G. B. Attwood 30/05/15

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom