Pearson

Mark Scheme (Results)

January 2018

Pearson Edexcel
International Advanced Subsidiary Level
In Further Pure Mathematics F1 (WFM01)
Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2018
Publications Code WST02_01_1801_MS
All the material in this publication is copyright
© Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- o.e. - or equivalent (and appropriate)
- d... or dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- \square or d... The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

January 2018
 WST02 STATISTICS 2
 Mark Scheme

Question	Scheme	Marks
1.(a)	$1-\mathrm{F}(4)=1-\frac{1}{16}(4-1)^{2}=\frac{7}{16}$	M1 A1
(b)	$[\mathrm{P}(X>3 \mid 2<X<4)=] \frac{\mathrm{F}(4)-\mathrm{F}(3)}{\mathrm{F}(4)-\mathrm{F}(2)}=\frac{\frac{9}{16}-\frac{4}{16}}{\frac{9}{16}-\frac{1}{16}}=\frac{5}{8}$	$\frac{\mathrm{M} 1}{\mathrm{dM}} 1 \quad \mathrm{~A} 1$
(c)	$\mathrm{f}(x)=\frac{\mathrm{d}}{\mathrm{d} x} \mathrm{~F}(x)=\frac{1}{8}(x-1)$	M1
	$\mathrm{E}(X)=\int_{\frac{1}{8}}^{5} x(x-1) \mathrm{d} x$	dM1
	$\mathrm{E}(X)=\left[\frac{1}{24} x^{3}-\frac{1}{16} x^{2}\right]_{1}^{5}=\left(\frac{5^{3}}{24}-\frac{5^{2}}{16}\right)-\left(\frac{1}{24}-\frac{1}{16}\right)=\frac{11}{3}$	dM1 A1
		(4) Total 9
	Notes	
(a)	M1 for writing or using $1-\mathrm{F}(4)$ A1 for $\frac{7}{16}$ oe (allow 0.4375 or 0.438)	
(b)	$1^{\text {st }} \mathrm{M} 1$ for writing or using $\mathrm{F}(4)-\mathrm{F}(3)$ (may be implied by $\frac{5}{16}$ or 0.3125) $2^{\text {nd }} \mathrm{dM} 1$ (dep on $1^{\text {st }} \mathrm{M} 1$) for a ratio of probabilities with $\mathrm{F}(4)-\mathrm{F}(2)$ written or u denominator (may be implied by $\frac{1}{2}$). Do not award $2^{\text {nd }}$ M1 if numerator $>$ deno A1 for $\frac{5}{8}$ or 0.625 $1^{\text {st }} \mathrm{M} 1$ for differentiating $\mathrm{F}(x)$ to find $\mathrm{f}(x) \quad$ (at least one $x^{n} \rightarrow x^{n-1}$) $2^{\text {nd }} \mathrm{dM} 1$ (dependent upon $1^{\text {st }} \mathrm{M} 1$) for multiplying $x^{‘} \mathrm{f}(x)$ ' and integrating (at lea $\rightarrow x^{n+1}$) $3^{\text {rd }}$ dM1 (dependent upon $2^{\text {nd }}$ M1) for substitution in of correct limits. May be implied by $\frac{175}{48}-\left(-\frac{1}{48}\right)$ A1 for $\frac{11}{3}$ or awrt 3.67	sed in the minator. st one x^{n}

Question	Scheme	Marks
3. (a)	$[\mathrm{f}(d)=]\left\{\begin{array}{lc} \frac{1}{5} & -2.5 \leq d \leq 2.5 \\ 0 & \text { otherwise } \end{array}\right.$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$
(b)	$\sqrt{\frac{(2.5-(-2.5))^{2}}{12}}=1.4433 \ldots$ awrt 1.44	M1 A1 (2)
(c)	0	B1
(d)	$\left[\frac{1-(-1)}{5}\right]=\frac{2}{5}$	B1 (1)
(e)	$\begin{aligned} & X \sim \mathrm{~B}\left(10,{ }^{\prime} 0.4^{\prime}\right) \\ & {[\mathrm{P}(X \geq 6)=] 1-\mathrm{P}(X \leq 5)=1-0.8338=0.1662 \quad \text { awrt } \underline{0.166}} \end{aligned}$	M1 M1 A1 (3) Total 9
	Notes	
(a)	$1^{\text {st }} \mathrm{B} 1$ for $\frac{1}{5}$ (ignore range for the $1^{\text {st }} \mathrm{B} 1$ mark) $2^{\text {nd }} \mathrm{B} 1$ fully correct distribution, including ranges. Condone use of other letters instead of d Allow < or <	
(b)	M1 for a correct expression with square root A1 awrt 1.44 allow $\frac{5 \sqrt{3}}{6}$ oe For integration allow complete correct expression to score M1 e.g. $\sqrt{\int_{-2.5}^{2.5} \frac{1}{5} x^{2} \mathrm{~d} x}$	
(e)	```\(1^{\text {st }} \mathrm{M} 1\) for writing or using binomial with 10 and 'their (d)' \(2^{\text {nd }} \mathrm{M} 1\) for writing or using \(1-\mathrm{P}(X \leq 5)\) A1 awrt 0.166 Alternative (for 'their(d)' >0.5) If using \(Y \sim \mathrm{~B}(10,1\) - 'their (d)') \(1^{\text {st }}\) M1 for writing or using binomial with 10 and 1 - 'their (d)' \(2^{\text {nd }} \mathrm{M} 1\) for writing or using \(\mathrm{P}(Y \leq 4)\)```	

Question	Scheme	Marks
4.(a)	$\begin{array}{lc} n p=4.2 & n p(1-p)=3.57 \\ \text { leading to }(1-p)=0.85 \\ p=0.15 \quad n=28 \end{array}$	M1 M1 A1 A1 (4)
(b)	$\begin{aligned} & X \sim \mathrm{~B}(25,0.35) \\ & \mathrm{E}(X)=8.75 \\ & {[\mathrm{P}(X>8.75)=\mathrm{P}(X \geq 9)=]} \\ & 1-\mathrm{P}(X \leq 8)=1-0.4668=0.5332 \end{aligned}$	B1 M1 A1 (3)
(c)	$\begin{array}{ll} \mathrm{H}_{0}: p=0.1 \\ Y \sim \mathrm{~B}(40,0.1) \end{array} \quad \mathrm{H}_{1}: p<0.1$	B1
	$\mathrm{P}(Y \leq 1)=0.080473 \ldots$ Do not reject $\mathrm{H}_{0} /$ Not significant	$\begin{aligned} & \text { M1 } \\ & \text { dM1 } \end{aligned}$
	The proportion of customers buying more than 2 bags of sweets is not less than $10 \% /$ not less than the shop's claim or	A1cso
	The shop's claim is not rejected	(4) Total 11
	Notes	
(a)	```\(1^{\text {st }}\) M1 for correct expressions for mean and variance \(2^{\text {nd }} \mathrm{M} 1\) for attempting to solve simultaneously by eliminating \(n\) or \(p\) \(1^{\text {st }} \mathrm{A} 1\) for \(p=0.15\) \(2^{\text {nd }} \mathrm{A} 1\) for \(n=28\)```	
(b)	B1 for $\mathrm{E}(X)=8.75$ (may be implied by the M1) M1 for using $1-\mathrm{P}(X \leq 8)$ with binomial $(25,0.35)$ (allow ft for a correct prob statement consistent with their $\mathrm{E}(X)$ with binomial $(25,0.35)$)	ility
(c)	B1 both hypotheses correct (must use p or π)	
	$1^{\text {st }} \mathrm{M} 1$ for awrt 0.0805 or for stating critical region is $Y=0$ from $\mathrm{B}(40,0.1)$ $2^{\text {nd }}$ dM1 Dependent on previous M being awarded. A correct statement (do not allow if there are contradicting non-contextual statements). This mark may be implied by a correct contextual statement.	
	A1cso A correct contextual statement. All previous marks must be awarded for this mark to be awarded. Must include proportion/number/percentage/probability (condone rate) oe and 10\%/shop's claim or The shop's claim is not rejected. Allow The shop's claim is supported/accepted	

Question	Scheme	Marks
5. (a)	$\begin{aligned} & {[X \sim \operatorname{Po}(10)]} \\ & {[\mathrm{P}(X>12)=1-\mathrm{P}(X \leq 12)=1-0.7916]=0.2084 \quad \text { awrt } \underline{0.208}} \end{aligned}$	B1
(b)	$[\mathrm{P}(X>k) \geq 2 \times$ ' 0.2084 ']	
	$\mathrm{P}(X \leq k)<1-{ }^{\prime} 0.4168 \ldots$.. $[=0.583 \ldots] \quad k=\underline{\mathbf{1 0}}$	M1 A1cao
(c)	$W \sim \operatorname{Po}(5)$	B1
	$[\mathrm{P}(W=4)]^{2}\left[=\left(\frac{\mathrm{e}^{-5} 5^{4}}{4!}\right)^{2}=(0.4405-0.2650)^{2}=\right]=0.030788 \ldots \text { awrt } \underline{\mathbf{0 . 0 3 0 8}}$	M1 A1 (3)
(d)	$\mathrm{P}\left(\left(X_{1} \geq 10 \cap X_{2} \geq 10\right) \mid(Y=21)\right)=\frac{\frac{\mathrm{e}^{-10} 10^{10}}{10!} \times \frac{\mathrm{e}^{-10} 10^{11}}{11!}+\frac{\mathrm{e}^{-10} 10^{11}}{11!} \times \frac{\mathrm{e}^{-10} 10^{10}}{10!}}{\mathrm{e}^{-20} 20^{21}}$	M1 M1
	21 !	M1
	$=0.336376 \ldots$ Use of tables:	
	$\frac{2 \times(0.5830-0.4579)(0.6968-0.5830)}{\mathrm{e}^{-20} 20^{21}}=0.336537 \ldots \quad \text { awrt } \underline{\mathbf{0 . 3 3 6} / 7}$	A1 (4)
	$\begin{gathered} \frac{21!}{} \\ L \sim \operatorname{Po}(40) \approx \mathrm{N}(40,40) \end{gathered}$	B1 B1
(e)	$\mathrm{P}(L>27)=\mathrm{P}\left(Z>\frac{27.5-40}{\sqrt{40}}\right)$	M1 M1
	$\mathrm{P}(Z>-1.98)=0.9761$ awrt 0.976	A1
		$\begin{array}{\|c} \\ \hline \text { Total } 15 \\ \hline \end{array}$
	Notes	
(b)(c)	M 1 for $\mathrm{P}(X \leq k)<1-2^{\prime} p$, or $\mathrm{P}(X<k+1)<1-2^{\prime} p$ '	
	A1 $k=10$ implies the M mark	
	B 1 for writing or using $\mathrm{Po}(5)$	
	M1 for $[\mathrm{P}(W=4)]^{2}$ or for either correct expression	
(d)	$1^{\text {st }}$ M1 for use of $\operatorname{Po}(10)$ with $X=10$ or $X=11$	
	May be implied by $[\mathrm{P}(X=10)=]$ awrt 0.125 or $[\mathrm{P}(X=11)=]$ awrt 0.114 $2^{\text {nd }} \mathrm{M} 1$ for correct expression for $2 \times \mathrm{P}(X=10) \times \mathrm{P}(X=11)$ from $\operatorname{Po}(10)$	
	May be implied by awrt 0.0284 or 0.0285	
	$3{ }^{\text {rd }} \mathrm{M} 1$ for a ratio of probabilities with correct denominator (awrt 0.0846) and num<denom	
	A1 awrt 0.336 or awrt 0.337	
(e)	$1^{\text {st }} \mathrm{B} 1$ for $\mathrm{Po}(40)$ (may be implied by $2^{\text {nd }} \mathrm{B} 1$) $2^{\text {nd }} B 1$ for writing or using normal distribution with mean and variance 40 (These values may be seen in the standardisation expression) $1^{\text {st }}$ M1 attempting continuity correction (27 ± 0.5) $2^{\text {nd }}$ M1 standardising using their mean and their standard deviation and 26.5/27/27.5 A1 awrt 0.976	

Pearson Education Limited. Registered company number 872828
with its registered office at 80 Strand, London, WC2R ORL, United Kingdom

