

Mark Scheme (Results)

January 2019

Pearson Edexcel International Advanced Level In Statistics S2 (WST02/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2019 Publications Code WST02_01_1901_MS All the material in this publication is copyright © Pearson Education Ltd 2019

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme designed to be awarded. are Examiners should always award full marks if deserved, i.e. if the answer mark scheme. matches the Examiners should also be prepared award zero marks if the to candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper or ag- answer given
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread

however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. Ignore wrong working or incorrect statements following a correct answer.

Question Number	Scheme	Marks
1. (a)	Any one response in context from : Each person <u>turns up</u> independently/randomly of others oe Probability/proportion/percentage of not <u>turning up</u> remains constant (5%) oe	B1
(b) (i) (ii)		(1) B1 M1A1
(c)	Let $T = \text{total earnings for a journey}$ T 8809401000 $P(T = t)$ "0.0769""0.2025" $(1 - ("0.0769" + "0.2025")) = [0.7206]$ $E(T) = 880 \times "0.0769" + 940 \times "0.2025" + 1000 \times (1 - ("0.0769 + 0.2025"))$	(3) M1 dM1
	=£978.62 $awrt (f) 979$ Alternative Let S = possible pay out	A1 (3) Alternative
	$ \frac{S}{P(S=s)} = \frac{60}{0.2025''} = \frac{120}{0.0769''} $ $ E(T) = 1000 - (120 \times "0.0769'' + 60 \times "0.2025'') $	M1 dM1
	$= \pounds 978.62 \qquad \text{awrt} (\pounds) \underline{979}$	A1 [7 marks]
	Notes	
(a)	Must be in context containing the words in bold. Allow turning up rather than not turni versa.	ng up and vice
(b) (ii)	M1 for correct use of tables or for correct use of formula $50(0.05)(0.95)^{49}$ Allow $P(X \le 1) - P(X = 0)$ oe written of used	
(c)	1 st M1 for identifying the 3 possible total earnings 880, 940, 1000 oe 2^{nd} dM1 for a correct ft expression for E(<i>T</i>) eg 880 × 'their b(i)' + 940 × ' their b(ii)' + 1000 × (1 – ('their b(i) + their b(ii)))	
	Alternative: 1^{st} M1 for identifying the 2 possible pay outs 120 and 60 oe 2^{nd} dM1 for a correct ft expression for E(T) Eg 1000 - (120 × their b(i) + 60 × their b(ii))	
	Eg	

Question Number	Scheme	Marks
2. (a)	$[X \sim Po(2)]$	
	$P(X < 5) = P(X \le 4)$	M1
	= 0.947346 awrt 0.947	A1
		(2)
(b)	$Y \sim Po(6)$	B1
	$e^{-6} \frac{6^n}{(n)!} = e^{-6} \frac{6^{n+1}}{(n+1)!} \rightarrow (n+1) = 6$ or $P(Y=4) = 0.13385$ P(Y=5) = 0.16062 P(Y=6) = 0.16062	M1
	n = 5	A1
		(3)
(c)	$[D \sim Po(9)]$	
	$P(c \le D \le 12) = P(D \le 12) - P(D \le c - 1)$ or $P(X \le d) = 0.8758 - 0.8546$	M1
	$0.8546 = 0.8758 - P(D \le c - 1) = 0.0212$	
	$P(D \le c-1) = 0.0212$ $P(X \le 3) = 0.0212$	dM1
	c - 1 = 3	
	$\frac{c-4}{c-4} \qquad \qquad \frac{c-4}{c-4}$	A1
		(3)
(h)	P(X=2) = 0.27067	B1
(u)	$W \sim B(6, awrt 0.27067)$	B1ft
	$P(W = 4) = {}^{6}C_{4}("0.27067")^{4}(1 - "0.27067")^{2}$	M1
	= 0.0428 awrt <u>0.043</u>	A1
		(4)
		[12 marks]
	Notes	[12]
(a)	M1 for writing or using $P(X \le 4)$ If answer is incorrect this must be shown	
a)		
(b)	 B1 for writing or using Po(6) M1 for a correct expressions for P(Y = n) and P(Y = n + 1) using their value of λ or folloast 2 of the given probabilities for Po(6) only correct to 3sf. A1 must be only one value of n given. If more than one value of n is given working n to award the B1 and M1, 5 on its own gains B1M1A1 	C
(c)	1 st M1 for the expression $P(D \le 12) - P(D \le c - 1)$ oe Condone $P(D \le 12) - P(D \le 12)$ letters. 2 nd dM1 for correct substitution of 0.8758 (awrt 0.876) and 0.8546 leading to $P(D \le c - 1) =$ a probability. Condone $P(D \le c) =$ a probability allow any letters	c) allow any
(d)	For an awrt 0.043 from correct working award full marks. 1 st B1 for awrt 0.271 seen 2 nd B1ft Follow through their P(X = 2) but you must see either B(6, "0.27067") of the form ("0.27067") ⁴ (1 – "0.27067") ² . Condone missing ⁶ C ₄ NB If P(X = 2) is not stated and 0.271 is not seen do not ft. M1 ⁶ C ₄ $p^4(1-p)^2$ or P(W ≤ 4) – P(W ≤ 3) or 0.9932– 0.9504 written	or working of

Question Number	Scheme	Marks
3. (a)	P(3 < X < 7) = F(7) - F(3) [= 0.7 - 0.2] <u>0.5</u>	M1 A1 (2)
(b)	$a = \frac{0.4 - 0}{4 - 2}$ $b = \frac{0}{6 - 4}$ $c = \frac{1 - 0.4}{8 - 6}$ <u>$a = 0.2$</u> <u>$b = 0$</u> <u>$c = 0.3$</u>	M1 A1 A1 (3)
(c)	$E(X) = \int_{2}^{4} 0.2 x dx \left[+ \int_{4}^{6} 0 x dx \right] + \int_{6}^{8} 0.3 x dx$	M1
	$E(X) = \left[\frac{0.2x^2}{2}\right]_2^4 + \left[\frac{0.3x^2}{2}\right]_6^8$	A1ft
	$= \underline{5.4}$	A1 (2)
	Alternative $E(X) = 3 \times p + 7 \times 2 \times \text{"their } c \text{"or } 3 \times 2 \times \text{"their } a \text{"} + 7 \times p \text{ where } 0 = 3 \times \text{"0.4"} + 7 \times \text{"0.6"} = \underline{5.4}$	(3) Alternative M1 A1ft A1
	Notes	[8 marks]
(a)	M1 for writing or using $F(7) - F(3)$ Implied by answer 0.5	
(b)	 M1 for attempt to find the gradient of at least 1 line segment (may be implied by either <i>a</i> or <i>c</i> correct) 1st A1 two values correct 2nd A1 all three values correct 	
(c)	M1 for a correct expression for $\int x f(x) dx$ (ignore limits) using their <i>a</i> , <i>b</i> and <i>c</i> (Con-	done <i>a</i> , <i>b</i> and <i>c</i>
	as a function of x) and an attempt to integrate $(x^n \rightarrow x^{n+1})$. No need to see $\int_{4}^{6} "0"x dx$ i	f b = 0
	otherwise it must be present A1ft correct integration with correct limits (ft their constants a , b and c from part (b)) A1 5.4 oe Alternative	
	M1 must have 3, 7 and one half correct ft their values for a/c . A1ft $3 \times 2 \times$ " their a "+ $7 \times 2 \times$ " their c " A1 5.4 oe	

Question Number	Scheme	Marks
4. (a)	H _{0: $p = 0.35$ H_{1: $p > 0.35$ Probability route CR route}}	B1
		M1
	$P(X \ge 11) = 1 - P(X \le 10) [= 1 - 0.9468] \qquad P(X \le 11) = 0.9804$ $P(X \ge 12) = 0.0106$	1011
	$P(X \ge 12) = 0.0196$ $CR: X \ge 12$	A1
	Do not Reject H_0 or not significant or 11 does not lie in the CR	dM1
		Alcso
	<u>Hadi's</u> belief is <u>not</u> supported or	AICSO
	the <u>proportion</u> of customers paying by <u>credit card</u> is not greater than 35%.	(5)
(b)	$X \sim B(20, 0.35)$	(3)
(b)		B1
	[E(X) =] 7	B1
	S.D. = $\sqrt{20 \times 0.35 \times 0.65}$ [= $\sqrt{4.55}$ = 2.133]	Ы
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	M1
	$11 < 11.266 \qquad 4 < 4.266 \qquad 1.875 < 2 \qquad 6.734 < 7$	Alcso
		(4)
		[9 marks]
	Notes	I
(a)	B1both hypotheses correct (may use p or π). Must have H0 and H1 1^{st} M1for writing or using $1 - P(X \le 10)$ or if leading to a CR allow $P(X \le 11) = av$ (condone 0.98) or $P(X \ge 12) = awrt 0.0196$ (may be implied by awrt 0.0532 orA1for 0.0532 or CR: $X \ge 12$ oe	
	NB M1 A1 for 0.9468 < 0.95	
	2 nd M1 Dependent on the 1 st M1.	
	For a correct statement i.e. not significant/accept H_0 /Not in CR Follow through their probability/CR and their H_1 . Must have a Critical regio critical value	n not just a
	Do not allow non-contextual conflicting statements. May be implied by a correct contextual statement on its own	
	2 nd A1cso fully correct solution and correct contextual statement. Underlined words rec correct statement. eg Allow Hadi is wrong or Hadi's claim is not supported	uired and in a
	The (proportion/percentage/number/rate/probability) paying by credit card (is not great	
	35%(0.35)/ remains the same) or there is insufficient evidence that the proportion of cu pay by credit card has increased	stomers who
(b)	$1^{st} B1 E(X) = 7$	
	2^{nd} B1 for a correct expression for standard deviation M1 for using 'mean' + 2 × 'standard deviation' or 11- "their mean" < 2 × 'standard	d deviation'
	or $\frac{11 - \text{"their E}(X)\text{"}}{\text{"Their sd"}}$ If E(X) and sd not given then allow	
	5 < E(X) < 10 and $0 < sd < 5A1cso for comparison with 11 or 4 or 2 allow awrt (11.3 or 4.27 or 1.88 or 6.43) oe a$	nd no errors
	$101 \times 101 \times 1000 \times 10000 \times 10000 \times 10000 \times 10000 \times 10000 \times 10000 \times 1000000 \times 10000 \times 10000000 \times 100000000$	

Question Number	Scheme	Marks
5. (a)(i)	$\frac{(b-2a)-a}{b-a} = \frac{1}{3}$ $3(b-3a) = (b-a)$ $b = 4a$ or $\frac{b-(b-2a)}{b-a} = \frac{2}{3}$ $6a = 2(b-a)$ $b = 4a$ or $b = 4a$ or	M1
	$E(X) = \frac{a+4a}{2} = \frac{5a}{2} * \qquad E(X) = \frac{a+4a}{2} = \frac{5a}{2} *$	M1A1cso (3)
(ii)	[[P(X > b - 4a) = P(X > 0) =] 1	B1 (1)
(b)(i)	$\frac{(c-3)^2}{12} = 3c - 9$ $c^2 - 42c + 117 = 0 \rightarrow (c-3)(c-39) = 0$	M1
	$c^{2} - 42c + 117 = 0 \rightarrow (c - 3)(c - 39) = 0$ <u>$c = 39$</u>	M1 A1 (3)
(ii)	$P(2Y-7 < 20 - Y) = P(Y < 9)$ $\frac{9-3}{'39'-3} = \frac{1}{6}$ awrt 0.167	M1 A1ft A1 (3)
(iii)	$E(Y^{2}) = Var(Y) + [E(Y)]^{2} = (3('39') - 9) + \left(\frac{'39' + 3}{2}\right)^{2}$	M1 A1ft
	$E(Y^2) = 549$	A1 (3) [13 marks]
	Notes	
(a)(i)	1 st M1 for a correct probability equation = $\frac{1}{3}$ (or a correct probability equation = $\frac{2}{3}$)in 2 nd M1 for use of E(X) = $\frac{a+4a'}{2}$ oe A1cso correct solution with no errors seen.	terms of <i>a</i> and <i>b</i>
(b)(i)	1 st M1 for $\frac{(c-3)^2}{12} = 3c - 9$ 2 nd M1 for rearranging correctly to form 3TQ = 0 and attempt to solve or $\frac{c-3}{12} = 3$ of	,
	For attempt at factorising it must give two of the terms when multiplied out For using the formula allow 1 slip if the correct formula is written down otherwise no For completing the square allow one sign error. A1 If more than one value is given and $c = 39$ is not clearly selected then A0. Allow [
(ii)	M1 for rearranging to (or using) $P(Y < 9)$ 1 st A1ft for a correct probability expression ft their '39'. If (i) is incorrect we must see expression eg $\frac{9-3}{"39"-3}$ or $\frac{6}{"36"}$ to ft	a correct
(iii)	M1 for writing or using $E(Y^2) = Var(Y) + [E(Y)]^2$ (must be $E(Y^2) = \int_{3}^{39'} \frac{1}{(39'-3)} y^2 dy$	with $y^2 \rightarrow y^3$
	condone different letter. If c is incorrect, they must show where $Var(Y)$ and E(X)	Y) come from.
	A1ft correct (follow through) expression for $E(Y^2)$ allow $\frac{1}{'39'-3} \left[\frac{y^3}{3}\right]_3^{'39'}$	

Question Number	Scheme	Marks
6. i.(a)	n is large and p is small	B1 (1)
(b)	$[X \sim B(3000, 0.0025) \rightarrow] Y \sim Po(7.5)$ P(Y>7) = 1 - P(Y \le 7) = 1 - 0.5246 = 0.47536 awrt <u>0.475</u>	B1 M1 A1 (3)
ii.(a)	A list/database/register of all employees	B1 (1)
(b)	The probability distribution of the number of employees that cycle to work [from all possible samples of 150]	B1
(c)	$D \sim N(60, 36)$ $P(C \le \alpha) = P(Z \le z) = 0.0668$ $\frac{\alpha - "60"}{"6"} = -1.5 \text{ or } \frac{"60" - \alpha}{"6"} = 1.5$	(1) B1 M1 B1
	"6" "6" $\alpha = 51$	Alcao (4)
(d)	$P(C \le 51) = P(D \le 51.5)$ $P\left(Z \le \frac{"51" - "60" + 0.5}{"6"}\right)$ $= P(Z \le -1.42) = 1 - 0.9222$	M1
	= 0.0778/0.0782 awrt <u>0.078</u>	A1 (2)
	Notes	[12 marks]
(a) i. (b)	<i>n</i> is bigger then 10 and $p < 0.25$ B1 for writing or using Po(7.5) M1 for writing or using $1 - P(Y \le 7)$ oe	
ii (a) (b) (c)	B1 must be all employees B1 Allow number of employees that cycle to work and their associated probabilities	
(d)	M1 for standardising with use of continuity correction 'their 51' + 0.5 allow same me in part(c) A1 awrt 0.078	an and sd used

Question Number	Scheme	Marks
7. (a)	$\int_{-3}^{0} c(x+3) dx + \int_{0}^{3} \frac{5}{36} (3-x) dx \text{or} \text{area of triangle} = \frac{3 \times 3c}{2} + \frac{3 \times \frac{5}{36} (3)}{2}$	M1
	$c(-\frac{9}{2}+9)+\frac{5}{8}=1$ oe $\frac{3\times 3c}{2}+\frac{5}{8}=1$ oe	dM1
	$c = \frac{1}{12} *$ Alternative	Alcso (3)
	$\left[\int c(x+3)\right] = c\left(\frac{x^2}{2} + 3x\right) + d \text{ and } \left[\int \frac{5}{36}(3-x)\right] = \frac{5}{36}\left(3x - \frac{x^2}{2}\right) + e$	M1
	Using $F(-3) = 0$ and $F(3) = 1$ and $d = e$	dM1
	$c = \frac{1}{12}*$	A1 cso
(b)(i)	A correct sketch of $f(x)$ with straight line positive gradient from $-3 \le x \le 0$ and straight line negative gradient from $0 \le x \le 3$, LHS below RHS at y axis	B1
(ii)	Correct labels: -3 and 3 on x-axis and $\frac{1}{4}$ and $\frac{5}{12}$ oe on y-axis Highest point [at f(0), so $X = 0$ is the mode] oe	B1 B1
(c)	x	(3)
(c)	$\int_{-3}^{1} \frac{1}{12}(t+3) dt \text{or} \int_{12}^{1} (x+3) dx \text{with} + c \text{ and } F(-3) = 0$	M1
	$\int_{-3}^{0} \frac{1}{12}(t+3) dt + \int_{0}^{x} \frac{5}{36}(3-t) dt \text{or} \int \frac{5}{36}(3-x) dx \text{with} + d \text{ and } F(3) = 1$	
	$\int_{-3}^{x} \frac{1}{12}(t+3) dt \text{or} \int \frac{1}{12}(x+3) dx \text{with} + c \text{ and } F(-3) = 0$ $\int_{-3}^{0} \frac{1}{12}(t+3) dt + \int_{0}^{x} \frac{5}{36}(3-t) dt \text{or} \int \frac{5}{36}(3-x) dx \text{with} + d \text{ and } F(3) = 1$ $F(x) = \begin{cases} 0 & x < -3 \\ \frac{1}{24}x^2 + \frac{1}{4}x + \frac{3}{8} & -3 \le x < 0 \\ \frac{5}{12}x - \frac{5}{72}x^2 + \frac{3}{8} & 0 \le x \le 3 \\ 1 & x > 3 \end{cases} \text{or} F(x) = \begin{cases} 0 \\ \frac{1}{24}(x+3)^2 \\ 1 - \frac{5}{72}(3-x)^2 \\ 1 \end{cases}$	B1 A1 A1
	$1 \qquad x > 3 \qquad 1$	(4)
(d)	$[P(X > d X > 0) =] \frac{1}{1 - F(0)} = \frac{2}{5} \text{ oe}$	M1
	$1 - F(d) = \frac{2}{5} \times \frac{5}{8} [= \frac{1}{4}]$ oe	A1
	Using cdf or area of triangle	
	Using cdf or area of triangle $1 - \left(\frac{5}{12}d - \frac{5}{72}d^2 + \frac{3}{8} \right) = \frac{2}{5} \times \frac{5}{8}$ or $\frac{(3-d)\frac{5}{36}(3-d)}{2} = \frac{2}{5} \times \frac{5}{8}$ or	dM1
	d = awrt <u>1.10</u>	A1 (1)
		(4) [14 marks]
	Notes	1
(a)	 M1 for correct integrals added, including limits, or area of triangle. Condone missing Do not accept c(0 + 3)=5/36(3 - 0) dM1 for equating to 1 and attempting to solve 	ax
	A1 cso for $c = \frac{1}{12}$ with no incorrect working seen	
(b)(ii)	B1: oe eg Maximum value. Condone highest probability	
(c)	M1 for attempting to integrate first line of pdf with correct limits $\underline{\mathbf{or}} + c$ and $F(-3) = 0$ <u>or</u> for attempting to integrate second line of pdf with correct limits $+F(0)$ <u>or</u> + $\frac{1}{2}$	

(d)	NB Allow use of $F(0) = \frac{3}{8}$ instead of either $F(-3) = 0$ or $F(3) = 1$ B1 1 st and 4 th line correct. Allow one of range to be otherwise, \leq instead of $<$ and \geq instead of $>$ 1 st A1 correct 2 nd line with limits. Allow $<$ instead of \leq and vice versa 2 nd A1 correct 3 rd line with limits. Allow $<$ instead of \leq and vice versa 1 st M1 for a correct probability expression, allow $\frac{P(X > d)}{P(X > 0)} = \frac{2}{5}$ oe implied by A1.
	Do not allow $P(X > d) \cap P(X > 0)$ for $P(X > d)$
	1 st A1 for $1 - F(d) = \frac{2}{5} \times \frac{5}{8}$ or $1 - P(x < d) = \frac{2}{5} \times \frac{5}{8} [= \frac{1}{4}]$ or $F(d) = \frac{3}{4}$ or $P(x > d) = \frac{1}{4}$ or
	2^{nd} dM1 previous M1 awarded. For $1 - F(d) =$ their $P(X > d)$ for their cdf oe and attempting to
	solve leading to a value for d.

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom