

Mark Scheme (Results)

January 2018

Pearson Edexcel International Advanced Subsidiary Level In Statistics S1 (WST01) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2018 Publications Code WST01_01_1801_MS All the material in this publication is copyright © Pearson Education Ltd 2018

General Marking Guidance

• All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

• Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.

• Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.

• There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.

• All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

• Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

• When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.

• Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

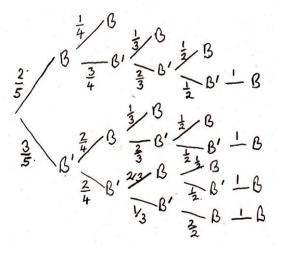
- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for `knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- o.e. or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- _ or d... The second mark is dependent on gaining the first mark

- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. Ignore wrong working or incorrect statements following a correct answer.

Question Number	Scheme	Marks
1. (a)	[61×15 =] <u>915</u>	B1
(b)	$[\operatorname{Var}_{A}] = \frac{59610}{10} - 77^{2} \qquad [\operatorname{Var}_{B}] = \frac{58035}{15} - 61^{2} = \underline{32} \qquad = \underline{148}$	(1) M1 A1 A1
(c)	Class <i>B</i> since its variance is larger	(3) B1ft (1)
(d)(i)	Mean _{AB} = $\frac{770 + 915''}{25} = 67.4$ or $\frac{10}{25} \times 77 + \frac{15}{25} \times 61 =$ <u>67.4</u>	M1 A1
(ii)	$Var_{AB} = \frac{59610 + 58035}{25} - "67.4"^2 = 163.04 \qquad \text{awrt } \underline{163}$	M1 A1
(e)(i)	No effect on the variance of class <i>A</i> since addition does not change variance $(Var (X + b) = Var (X))$	(4) B1
(ii)	The mean will increase since the <u>total score</u> has increased <u>or</u> mean of A increased but mean of B stayed the same	B1
(iii)	The variance of the entire group will increase since the <u>mean of class A</u> is now <u>further away</u> from the <u>mean of class B</u>	B1 (3) [12 marks]
	Notes	
(b)	M1 for a correct method for variance for either class. Accept s^2 and allow inside	e √
	1 st A1 for 1 correct answer. NB $s_A^2 = 35.5$ or awrt 35.6 and $s_B^2 = 158.57$ or	
	2 nd A1 for both correct. [ISW standard deviations following correct variances	.]
(c)	B1ft for Class <i>B</i> and it has a larger variance/standard deviation (do not allow s If $Var_A > Var_B$ then allow choice of <i>A</i> since variance is larger. Ft their variance is larger.	-
(d)(i)	M1 for a correct calculation for the mean (or weighted mean), ft their 915 from (a) A1 for 67.4 o.e.	
(ii)	M1 for use of correct formula (no $$) with total $\sum x^2 = 117645$ and their mean.NB $\frac{S_{xx}}{25} = \frac{4076}{25}$ A1 for awrt 163 [Don't ISW standard deviation]	
(e)(i)	B1 for no effect/does not change and correct supporting reason that mentions a subtraction doesn't affect or only affected by multiplication/division. Comm $(x-\overline{x})$ doesn't change is fine. Just "coding" is not sufficient.	
(ii)	B1 for stating the mean will increase <u>and</u> correct supporting reason that states o total (of scores) has increased. Allow new mean = $\frac{1715}{25} = 68.6$	r implies that
(iii)	B1 for increase and correct supporting reason that mentions <u>A marks</u> and <u>B mar</u> they are <u>more spread</u> out. Just saying: "marks are more varied" <u>or</u> "only added 3 to one class" is not	
NB	Calc for (iii) gives new $\Sigma x^2 = 64\ 320$ and $Var_{AB} = 188.24$ but no mark	


Question Number	Scheme	Marks
2. (a)		B1 (1)
(b) (i) (ii)	$[P(C \cap D) = 0]$ $P(C \cup D) = P(C) + P(D) = \frac{1}{2}$ $P(C \mid D)[=\frac{P(C \cap D)}{P(D)}] = 0$	B1 B1 B1 (3)
	$P(F \cup G) = P(F) + P(G) - P(F \cap G)$ $\frac{3}{8} = \frac{1}{6} + P(G) - \frac{1}{6} \times P(G)$ $P(G) = \frac{1}{4}$	M1 M1 A1
(ii)	$P(G) = \frac{1}{4}$ $P(F \mid G')[= P(F)] = \frac{1}{6}$ Note:	B1 (4) [8 marks]
(a)	Notes If a 2 nd diagram is drawn then award B0 unless the incorrect diagram is crossed out	
(b)	1 st B1 for writing or using $P(C \cap D) = 0$ anywhere in (b)(may be implied by correct $P(C \mid D)$) $P(C \cup D) = P(C) + P(D) - P(C \cap D) = \left[\frac{1}{5} + \frac{3}{10}\right] = \frac{1}{2}$ does imply 1 st B1 2 nd B1 for $P(C \cup D) = 0.5$ (o.e.) (may just be labelled (b)(i) $\frac{1}{2}$) This does <u>not</u> imply 1 st B1 3 rd B1 for $P(C \mid D) = 0$ this <u>will</u> imply 1 st B1 too	
(c)(i)	1 st M1 for use of addition formula (3 terms) with correct substitution of at least one term Assuming or stating P(F ∩ G) = 0 scores M0 2 nd M1 for <u>use</u> of independence P(F ∩ G) = P(F)×P(G) = $\frac{1}{6}$ ×P(G) (i.e. must be used) Use of e.g. x for P(G) is fine. NB $\frac{3}{8} = \frac{1}{6}$ ×P(G) is M0M0	
ALT	Let $y = P(F \cap G)$ then $P(G) = y + \frac{3}{8} - \frac{1}{6}$ scores 1st M1 and $y = \frac{1}{6}(y + \frac{3}{8} - \frac{1}{6})$ o.e. gets 2 nd M1	
(ii)	A1 for $\frac{1}{4}$ o.e. B1 for $P(F G') = \frac{1}{6}$ (may be labelled (c)(ii) $\frac{1}{6}$) Accept exact equivalents.	

Question Number	Scheme	Marks
3. (a)	[It supports because:] r is close to -1 or there is strong correlation.	B1
(b)	e.g. The dependent variable. The variable being studied.	(1) B1 (1)
(c)	$[b = \frac{S_{ch}}{S_{cc}} = \frac{-3034.6}{303448} = -0.01[000\text{hours/mg}]$	M1 A1
	So the data support the statement. (o.e.)	dA1
(d)	$a = \overline{h} - b\overline{c} = \frac{126}{20} - "-0.01" \times \frac{3660}{20} = 6.3 - "-0.01" \times 183 = 8.13$ awrt <u>8.1</u>	(3) M1 A1ft A1
		(3)
		[8 marks]
	Notes	
(b)	B1 Allow equivalent definitions e.g. the variable you can't control in an experim or the amount of sleep <u>depends</u> on the amount of caffeine or is affected by (changes according to) another variable BUT "can't be measured" is B0	nent.
	Mark (c) and (d) together. Gradient: M1 & 1st A1 in (c) Intercept: M1 &	1 st A1 in (d)
(c)	M1 for calculation of gradient (correct expression)	
	1^{st} A1 for awrt -0.01 must be seen to come from gradient (can be part of wh	ole equation)
	2 nd dA1 dependent on M1 and 1 st A1 for "claim is supported" or "Martin is corr	rect"
	or "reduces by 1 hour"	
2 nd A1 2 nd A1	If whole equation is seen before 2^{nd} A1 attempted they must refer to just gradient <u>or</u> May use equation to calculate <i>h</i> for some <i>c</i> and then <i>c</i> + 100 to show loss of 1 hour If they use the intercept and <i>c</i> = 100, must see a clear subtraction (e.g. 8.13 – 7.13) to score	
(d)	M1 for attempt to find <i>a</i> for linear regression model	
	(Use of letter <i>b</i> or ft their value of <i>b</i> but a correctly placed \overline{h} or \overline{c} ne 1 st A1ft for correct expression for <i>a</i> (follow through their value for <i>b</i>)	eded)
	2^{nd} A1 for awrt 8.1 (hours) (or 8 hours and awrt 8 minutes) [Allow 8.1 0]	

Question Number	Scheme	Marks
4. (a)	$E(X) = -4a + (-3b) + a + 2b + 5 \times 0.2[= -3a - b + 1]$	B1
(b)(i) (ii)	E(X) = 0 a+b+a+b+0.2 = 1 -3a-b+1 = 0 Solving simultaneously to give $a = 0.3$ $b = 0.1$	(1) B1 B1 M1 A1 A1
(c)	Var(1-3X) = 9Var(X) $E(X^{2}) = (-4)^{2}a + (-3)^{2}b + a + (2^{2})b + 25 \times 0.2[=11.4]$ Var(1-3X) = 102.6 awrt <u>103</u>	(5) M1 M1 A1 (3)
(d)(i)	[P(Y < 0) = P(1 - X < 0) =]	
(ii)	P(X > 1) = b + 0.2 = 0.3 [P(Y < k) = P(1 - X < k)] = P(X > (1 - k)) = 0.2 \implies 1 - k = 2 <u>k = -1</u>	M1 A1ft M1 A1
		(4) [13 marks]
	Notes	
(a)	B1 for a correct expression for $E(X)$ (need not be simplified)	
(b)(i) (ii)	B1 $E(X) = 0$ or $-3a - b + 1 = 0$ or $(b)(i) 0$ (must be explicitly stated in (b) before values for <i>a</i> and <i>b</i> found) B1 for using sum of probabilities = 1 to form a correct equation in <i>a</i> and <i>b</i> M1 for attempting to eliminate one variable (correct processes on 2 indep' linear equations) $1^{st} A1$ for $a = 0.3$ or $b = 0.1$ $2^{nd} A1$ for both $a = 0.3$ and $b = 0.1$	
(c)	1 st M1 for 3 ² Var(X) <u>or</u> 3 ² E(X ²) 2 nd M1 for a correct algebraic expression for E(X ²) e.g. 17 <i>a</i> +13 <i>b</i> +5 <u>or</u> numerical expression and can ft <i>a</i> and <i>b</i> if probabilities May see E(X²) = or Var(X) =in part (b) and can then award the	
Dis (1 – 3X)	1310 -2 -5 -14 0.30.10.30.10.21 st M1 for prob distribution, ft their <i>a</i> and probabilities. All $(1 - 3X)$ values correct 2^{nd} M1 for correct expression for Var(1 including the -1^2 for $[E(1 - 3X)]^2$ A1 for awrt 103	ct.
(d)(i)	If $a = b = 0.2$ then can only score M1A0 if correct values for X or Y are seen. Just 0.2+0.2 is M0A0 M1 for P(X > 1) or for X = 2 and X = 5 only or for Y = -1 and Y = -4 only or "b" + 0.2	
Ans only (ii)	A1ft for their $b + 0.2$ if M1 scored (where b and $b + 0.2$ are probabilities) M1A1 for 0.3 only if $b = 0.1$ in part (b). Answer only $\neq 0.3$ is M0A0 M1 for $P(X > (1-k)) = 0.2$ or $1-k=2$ or $P(Y < -1) = 0.2$ A1 for $k = -1$	
Dis of Y	An attempt at the distribution for Y will get 1^{st} M1 in (i) when the correct value	es are chosen.

Quest Numl		Scheme	Mark	S
	(a)	$[-2 \times 1000 + 20000] = (\pounds)18000$	B1	
	(b)	$S_{wy} = 2490 - \frac{81 \times 405}{9}$ or $2490 - 3645$ [= -1155]	B1	(1)
		$r = \frac{"-1155"}{\sqrt{660 \times 2500}}$ or $\frac{"-1155"}{\sqrt{1650000}} = -0.899$ (*)	M1 A1cs	50
		$\sqrt{660 \times 2500}$ of $\sqrt{1650000} = 0.000$ (7)		(3)
	(c)	-0.899 (or "same"); as (linear) coding does not have any effect on correlation	B1	
				(1)
	(d)	$y = 60.75 - 1.75 \frac{(x - 20000)}{1000}$	M1	
		1000	A1A1	
		y = 95.75 - 0.00175x		(3)
	(e)	y = 95.75 - 0.00175(21000) or $y = 60.75 - 1.75(1)$	M1	
		$y = 59 \qquad \text{awrt } \underline{59}$	A1	
1	(f)	Data: $x = (\pounds)18000$ to $x = (\pounds)45000$ or Franca: $w = 5$ to $w = 20$	M1	(2)
		As this is interpolation, the estimates are reliable.	A1	
			[12 mai	(2) rks]
		Notes		
	(b)	B1 for a correct numerical <u>expression</u> for S_{wy} (this must be seen (may be on num	nerator of	r))
		M1 for a correct expression for r (may ft their $S_{wy} \neq 2490$)	1	
		A1cso for -0.899 or better (calc: -0.89916628)[B1 and M1 scored and al	I correct]	
	(d)	M1 for substituting $w = (x - 20000)/1000$ into the linear equation		
1		1 st A1 <i>a</i> = awrt 95.8 or exact fraction equivalent to $\frac{383}{4}$		
		$2^{\text{nd}} \text{ A1 } b = -0.00175 \text{ o.e. e.g.} \frac{-1.75}{1000} \text{or} -1.75 \times 10^{-3} \text{or} -\frac{7}{4000} \text{ in an equation } y = -1.75 \times 10^{-3} \text{ or} -\frac{7}{4000} \text{ or} -\frac{7}{400} or$	a + bx	
	(e)	M1 for substituting $x = 21000$ into their equation in (d) provided "changed"		
	(0)	or substituting $w = 1$ into the given equation		
		A1 for awrt 59 (minutes) [ignore units even if incorrect e.g. "hours" or "km"]		
	(f)	M1 for showing that $x = \pounds 25000$ to $x = \pounds 40000$ gives $w = 5$ to $w = 20$ (both correct w	values need	led)
l	(I)	or for showing that $w = -2$ is $x = 18\ 000$ and $w = 25$ is $x = 45\ 000$ (both correct x value)		
		A1 for mentioning interpolation or "within range" so <u>reliable</u> provided two suitable values stat	ted for M1	

Question Number	Scheme	Marks	
6. (a)	$[\mathbf{P}(S=1)=] \ \underline{0}$	B1 (1)	
(b)		(1) M1	
	$=1-\left(\frac{2}{5}\times\frac{1}{4}\right),=\frac{9}{10}$ or e.g. $\frac{2}{5}\times\frac{3}{4}+\frac{3}{5},=\underline{0.9}$	M1 A1 (3)	
(c)	$P(S=3) = \left(\frac{3}{5} \times \frac{2}{4} \times \frac{1}{3} + \frac{2}{5} \times \frac{3}{4} \times \frac{1}{3}\right), = \frac{1}{5}$	M1, A1	
	$\mathbf{D}(\mathbf{C} = 2 \circ 2\mathbf{n} d\mathbf{i} \mathbf{c} \mathbf{h} \mathbf{h} \mathbf{c}) = \frac{3}{3} \times \frac{2}{3} \times \frac{1}{3} = 1$	(2)	
(d)	$P(S = 3 \mid 2nd \text{ is blue}) = \frac{P(S = 3 \cap 2nd \text{ is blue})}{P(2nd \text{ is blue})} = \frac{\frac{3}{5} \times \frac{2}{4} \times \frac{1}{3}}{\frac{3}{5} \times \frac{2}{4} + \frac{2}{5} \times \frac{1}{4}} = \frac{1}{4}$	M1 A1 (2)	
(e)	$P(S = 5) = 4 \times \left(\frac{3}{5} \times \frac{2}{4} \times \frac{1}{3} \times \frac{2}{2} \times \frac{1}{1}\right) = \frac{2}{5}$	B1 M1 A1	
		(3) [11 marks]	
	Notes		
(b)	1 st M1 for writing or using $1-P(S=2)$ etc <u>or</u> identifying cases for $S > 2$ e.g. <i>BB'</i> or <i>B'</i> This mark may be implied by a fully correct numerical expression for the probability 2 nd M1 for correct expression for $P(S=2)$ <u>or</u> for $P(S>2)$ e.g. $0.4 \times 0.75 + 0.6$ Ans of 0.9 3/3		
(c)	M1 for <u>both</u> correct products (or $2 \times$)		
(d)	M1 for a correct ratio of probabilities <u>or</u> a correct expression with correct substitution of either numerator or denominator (num <denom)< th=""></denom)<>		
(e)	B1 for ×4 or the sum of 4 identical (or equivalent) products. Allow "replacement" here M1 for any one product correct (don't need to see all $\frac{2}{2}$ or $\frac{1}{1}$ terms)		
	A1 for 0.4 o.e. Some may write it down so score B1 and M1 by implication.		
NB	<u>s 2 3 4</u>	5	
	P(S = s) $\frac{1}{10}$ $\frac{1}{5}$ $\frac{3}{10}$	$\frac{2}{5}$	
7 socks	Allow MR for using 5 + 2 socks. Deduct upto 2 A1 marks.		

This may be useful!

Question Number	Scheme	Marks
7. (a)	$P(G > 174) = P(Z > \frac{174 - 180}{15}) = P(Z > -0.4), = 0.6554$ awrt <u>0.655</u>	M1, A1 (2)
(b)	P(k < G < 174) = P(G < 174) - P(G < k)	
	P(k < G < 174) = P(G < 174) - P(G < k) P(G < k) = (1-0.6554') - 0.3196 or P(G > k) = `0.6554' + 0.3196 [=0.975]	M1
	$P(Z < \frac{k - 180}{15}) = 0.025 \Longrightarrow \frac{k - 180}{15} = -1.96$	M1 B1
	awrt <u>150.6</u>	A1
		(4)
(c)(i)	$P(G > w) = P(B < w) \Longrightarrow \frac{w - 180}{15} = -\frac{w - 216}{30}$	M1 A1
	$\Rightarrow 45w = 8640 \Rightarrow \qquad w = \underline{192}$	A1
(ii)	$P(G > w) = P\left(Z > \frac{"192"-180}{15}\right) \text{ or } P(B < w) = P\left(Z < \frac{"192"-216}{30}\right)$	M1
	P(Z > 0.8) = 1 - 0.7881 = 0.2119 $p = awrt 0.212$	A1
		(5) [11 marks]
	Notes	
(a)	M1 for standardising 174 with 180 and 15 and selecting correct region i.e. P(?	> -0.4) o.e.
	Just $Z = -0.4$ is M0 unless indicate with > or diagram which region(use of tables r	nay be wrong)
	A1 awrt 0.655 do not isw [Final answer of awrt 0.655 scores M1A1]	
(b)	1 st M1 for a correct expression for $P(G < k)$ (may be seen in diagram or implied)) <u>or</u> a correct
	expression for $P(G > k)$ ft their "0.6554" from (a). Probability for G may be	standardised
	2^{nd} M1 for standardising k with 180 and 15 and equating to a z-value $ z > 1.5$	
	B1 for (<u>+</u>) 1.96 or better (used as their z value) NB $\frac{k-180}{15} = -1.96$ will imply	M1M1B1
	A1 for awrt 150.6 (must come from a correct equation)	
(c)(i)	M1 for standardising <i>w</i> with 180 and 15 <u>and</u> 216 and 30 (allow <u>+</u>)	
	1 st A1 for equating standardisations with correct signs	
	2 nd A1 for 192	
(ii)	M1 for correct standardisation of $G > w$ with '192', 180 and 15 or $B < w$ with '192', 2	216 and 30
	A1 for awrt 0.212	

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom