edexcel

Mark Scheme (Results)
Summer 2016

Pearson Edexcel IAL in Core Mathematics 34 (WMA02/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2016
Publications Code WMA02_01_1606_MS
All the material in this publication is copyright
© Pearson Education Ltd 2016

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL I AL MATHEMATI CS

General I nstructions for Marking

1. The total number of marks for the paper is 125
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: Method marks are awarded for ‘knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- d... or dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- \square or d... The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as Aft .
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$\left(x^{2}+b x+c\right)=(x+p)(x+q)$, where $p q|=|c|$, leading to $\mathrm{x}=\ldots$
$\left(a x^{2}+b x+c\right)=(m x+p)(n x+q)$, where $p q|=|c|$ and $| m n|=|a|$, leading to $\mathrm{x}=\ldots$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving $x^{2}+b x+c=0: \quad\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c=0, q \neq 0$, leading to $\mathrm{x}=\ldots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $\left(x^{n} \rightarrow x^{n-1}\right)$

2. Integration

Power of at least one term increased by 1. ($x^{n} \rightarrow x^{n+1}$)

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:
Method mark for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is not quoted, the method mark can be gained by implication from correct working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Question Number	Scheme Notes	Marks
1.(a)	$R=\sqrt{34}$ Cao (Must be exact but score when first seen and ignore decimal value $(5.83 \ldots))$	B1
	$\tan \alpha= \pm \frac{5}{3}, \tan \alpha= \pm \frac{3}{5} \Rightarrow \alpha=\ldots$ (Allow $\cos \alpha= \pm \frac{5}{\sqrt{34}}$ or $\pm \frac{3}{\sqrt{34}}, \sin \alpha= \pm \frac{5}{\sqrt{34}}$ or $\pm \frac{3}{\sqrt{34}} \Rightarrow \alpha=\ldots$) Where $\sqrt{34}$ is their R	M1
	$\alpha=59.04^{\circ} \mathrm{awrt} 59.04^{\circ}$	A1
		(3)
(b)	$\sqrt{34} \cos (\theta-59.04)=2 \Rightarrow \cos (\theta-59.04)=\frac{2}{\sqrt{34}}(0.343)$ Attempts to use part (a) " $\sqrt{34} " \cos (\theta-" 59.04 ")=2$ and proceeds to $\cos (\theta \pm " 59.04 ")=K, \quad\|K\|,, 1$ May be implied by $\theta-" 59.04 "=69.94 \ldots{ }^{\circ}$ or $\theta-" 59.04 " \cos ^{-1}\left(\frac{2}{\text { their } \sqrt{34}}\right)$ The θ-"59.04" must be seen here or implied later	M1
	$\theta_{1}-59.04=69.94 \Rightarrow \theta_{1}=\operatorname{awrt} 129.0^{\circ}$	A1
	$\theta_{2} \pm 59.04=360-' 69.94{ }^{\prime} \Rightarrow \theta_{2}=\ldots$ Correct attempt at a second solution in the range. It is dependent upon having scored the previous M . Usually for θ - their $59.04=360$ - their ' 69.94 ' $\Rightarrow \theta=\ldots$	dM1
	$\theta_{2}=349.1^{\circ}$ awrt 349.1 ${ }^{\circ}$	A1
	For solutions in (b) that are otherwise fully correct, if there are extra answers in range, deduct the final A mark.	
		(4)
(c)	$\theta+\text { their } 59.04=\cos ^{-1}\left(\frac{2}{\text { their } \sqrt{34}}\right) \Rightarrow \theta=\ldots$ Allow θ - their $59.04=\cos ^{-1}\left(\frac{2}{\text { their } \sqrt{34}}\right) \Rightarrow \theta=\ldots$ if they have $\theta+.$. in (b) Evidence that use is being made of parts (a) and (b) to obtain a value for θ. This can be implied by the use of their answers to part (b).	M1
	$\theta=10.9^{\circ} \quad$ awrt 10.9	A1
		(2)
		(9 marks)

Question Number	Scheme	Notes	Marks
2	$\frac{\mathrm{d}(4 x \sin x)}{\mathrm{d} x}=4 x \cos x+4 \sin x$	Applies product rule to $4 x \sin x$ to give $\frac{\mathrm{d}(4 x \sin x)}{\mathrm{d} x}= \pm 4 x \cos x+4 \sin x$	M1
	$\frac{\mathrm{d}\left(\pi y^{2}\right)}{\mathrm{d} y}=2 \pi y \frac{\mathrm{~d} y}{\mathrm{~d} x}$	Applies chain rule to πy^{2} to give $\frac{\mathrm{d}\left(\pi y^{2}\right)}{\mathrm{d} y}=A y \frac{\mathrm{~d} y}{\mathrm{~d} x}$	M1
	$4 x \sin x=\pi y^{2}+2 x \Rightarrow 4 x \cos x+4 \sin x=2 \pi y \frac{\mathrm{~d} y}{\mathrm{~d} x}+2$ Fully correct differentiation. oe Accept $4 x \cos x \mathrm{~d} x+4 \sin x \mathrm{~d} x=2 \pi y \mathrm{~d} y+2 \mathrm{~d} x$		A1
	For the differentiation ignore any spurious $" \frac{\mathrm{~d} y}{\mathrm{~d} x}="$		
	Alternative for first 3 marks using explicit differentiation:$y=\left(\frac{1}{\sqrt{\pi}}\right)(4 x \sin x-2 x)^{\frac{1}{2}}$		
	$\begin{gathered} \frac{\mathrm{d} y}{\mathrm{~d} x}=\left(\frac{1}{2 \sqrt{\pi}}\right)(4 x \sin x-2 x)^{-\frac{1}{2}}(4 x \cos x+4 \sin x-2) \\ \text { M1: } \frac{\mathrm{d}(4 x \sin x)}{\mathrm{d} x}= \pm 4 x \cos x+4 \sin x \text { (as before) } \\ \text { M1: }(4 x \sin x-2 x)^{\frac{1}{2}} \rightarrow k(4 x \sin x-2 x)^{-\frac{1}{2}} \end{gathered}$		M1 M1
	Allow omission of π and sign errors when rearranging for the M marks		
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2 \sqrt{\pi}}(4 x \sin x-2 x)^{-\frac{1}{2}}(4 x \cos x+4 \sin x-2) \text { oe }$		A1
	$\begin{gathered} x=\frac{\pi}{2}, y=1 \\ \Rightarrow 4=2 \pi \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\ldots\left(\frac{1}{\pi}\right) \end{gathered}$	Uses $x=\frac{\pi}{2}$ and $y=1$ to obtain a value for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ (may be implied). For implicit differentiation, there must be a d $y / \mathrm{d} x$ and there must be x 's and y 's. Explicit differentiation just requires use of $x=\frac{\pi}{2}$.	M1
	$y-1="-\pi "\left(x-\frac{\pi}{2}\right) \text { or } y="-\pi " x+c \Rightarrow c=1+\frac{\pi^{2}}{2}$ Uses normal gradient $-1 / \frac{\mathrm{d} y}{\mathrm{~d} x}$ and $x=\frac{\pi}{2}, y=1$ to find equation of normal. Must use $-1 /\left(\right.$ their $\left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right)$ and $x=\frac{\pi}{2}$ and $y=1$ must be correctly placed. If using $y=m x+c$ must reach as far as $c=\ldots$		M1
	$y-1=-\pi\left(x-\frac{\pi}{2}\right)$ oe	Allow 3sf or more decimal equivalent answers e.g. $\begin{aligned} & y=-3.14 x+5.93 \\ & y-1=-3.14(x-1.57) \text { etc. } \end{aligned}$	A1cso
			(6 marks)

Question Number	Scheme Notes	Marks
4 (a)	$\begin{array}{r} x ^ { 2 } + x - 1 2 \longdiv { x ^ { 4 } + x ^ { 3 } - 7 x ^ { 2 } + 8 x - 4 8 } \\ \frac{x^{4}+x^{3}-12 x^{2}}{5 x^{2}+8 x-48} \\ \frac{5 x^{2}+5 x-60}{3 x+12} \end{array}$ M1: Divides $x^{4}+x^{3}-7 x^{2}+8 x-48$ by $x^{2}+x-12$ to get a quadratic quotient and a remainder of the form $\alpha x+\beta$ where α and β are not both zero A1: Correct quotient and remainder	M1A1
	$\begin{gathered} \frac{x^{4}+x^{3}-7 x^{2}+8 x-48}{x^{2}+x-12} \equiv x^{2}+5+\frac{3(x+4) \text { or } 3 x+12}{(x+4)(x-3)} \\ \text { Writes their answer as } \\ \frac{x^{4}+x^{3}-7 x^{2}+8 x-48}{x^{2}+x-12} \equiv \text { Their Quotient }+\frac{\text { Their Remainder }}{(x+4)(x-3)} \end{gathered}$	M1
	$\equiv x^{2}+5+\frac{3}{(x-3)}$ or states $A=5, B=3$	A1
		(4)

	Alternatives to part (a) by dividing by linear factors	
	M1: Divides by $(x-3)$ first then divides by $(x+4)$: $\begin{gathered} \left(x^{4}+x^{3}-7 x^{2}+8 x-48\right) \div(x-3): Q_{1}=x^{3}+4 x^{2}+5 x+23, R_{1}=21 \\ \left(x^{3}+4 x^{2}+5 x+23\right) \div(x+4): Q_{2}=x^{2}+5, R_{2}=3 \end{gathered}$ For the M1, first division requires Q_{1} to be a cubic and R_{1} a constant and the second division to give a quadratic Q_{2} and constant R_{2} A1: Correct quotients and remainders	M1A1
	$\frac{x^{4}+x^{3}-7 x^{2}+8 x-48}{(x+4)(x-3)} \equiv x^{2}+5+\frac{3}{x+4}+\frac{21}{(x-3)(x+4)}$ Writes their answer as $Q_{2}+\frac{R_{2}}{x+4}+\frac{R_{1}}{(x-3)(x+4)}$	M1
	$\equiv x^{2}+5+\frac{3}{(x-3)}$ or states $A=5, B=3$	A1
	M1: Divides by $(x+4)$ first then divides by $(x-3)$: $\begin{gathered} \left(x^{4}+x^{3}-7 x^{2}+8 x-48\right) \div(x+4): Q_{1}=x^{3}-3 x^{2}+5 x-12, R_{1}=0 \\ \left(x^{3}-3 x^{2}+5 x-12\right) \div(x-3): Q_{2}=x^{2}+5, R_{2}=3 \end{gathered}$ For the M1, first division requires Q_{1} to be a cubic and R_{1} a constant and the second division to give a quadratic Q_{2} and constant R_{2} A1: Correct quotients and remainders	M1A1
	$\frac{x^{4}+x^{3}-7 x^{2}+8 x-48}{(x+4)(x-3)} \equiv x^{2}+5+\frac{3}{x-3}(+0)$ Writes their answer as $Q_{2}+\frac{R_{2}}{x-3}+\frac{R_{1}}{(x-3)(x+4)}$	M1
	$\equiv x^{2}+5+\frac{3}{(x-3)}$ or states $A=5, B=3$	A1

Question Number	Scheme Notes	Marks
	Note that 2^{x} can be replaced by $\mathrm{e}^{x \ln 2}$ throughout and allow omission of "dx" throughout	
5	$\int x 2^{x} \mathrm{~d} x=x \frac{2^{x}}{\ln 2}-\int \frac{2^{x}}{\ln 2} \mathrm{~d} x$	M1A1
	$\int x 2^{x} \mathrm{~d} x=x \frac{2^{x}}{\ln 2}-\frac{2^{x}}{(\ln 2)^{2}} \quad \begin{aligned} & \text { dM1: Completes to obtain an } \\ & \text { expression of the form } \ldots-k 2^{x} \end{aligned}{\text { A1: } x \frac{2^{x}}{\ln 2}-\frac{2^{x}}{(\ln 2)^{2}}}^{2}$	dM1A1
	$\left[x \frac{2^{x}}{\ln 2}-\frac{2^{x}}{(\ln 2)^{2}}\right]_{0}^{2}=\left(\frac{2 \times 2^{2}}{\ln 2}-\frac{2^{2}}{(\ln 2)^{2}}\right)-\left(\frac{0 \times 2^{0}}{\ln 2}-\frac{2^{0}}{(\ln 2)^{2}}\right)$ Uses the limits 0 and 2 and subtracts the right way round. $F(0)$ may be implied by e.g. $\frac{1}{(\ln 2)^{2}}$ $\operatorname{But}\left(\frac{2 \times 2^{2}}{\ln 2}-\frac{2^{2}}{(\ln 2)^{2}}\right)-(0)$ or just $\left(\frac{2 \times 2^{2}}{\ln 2}-\frac{2^{2}}{(\ln 2)^{2}}\right)$ is ddM0	ddM1
	$\left(=\frac{8}{\ln 2}-\frac{4}{(\ln 2)^{2}}+\frac{1}{(\ln 2)^{2}}\right)$	
	Correct simplified fraction. Allow equivalent simplified forms $=\frac{8 \ln 2-3}{(\ln 2)^{2}}$ $\text { e.g. } \frac{\ln 256-3}{(\ln 2)^{2}}, \frac{\ln 2^{8}-3}{(\ln 2)^{2}}$ Allow denominator as $(\ln 2)(\ln 2)$ and $\ln ^{2} 2$ but not as $\ln 2^{2}$	A1
		(6 marks)

	Alternative by substitution:		
	$u=2^{x} \Rightarrow \int x 2^{x} \mathrm{~d} x=\int \frac{\ln u}{\ln 2} \cdot u \cdot \frac{1}{u \ln 2} \mathrm{~d} u=\int \frac{\ln u}{(\ln 2)^{2}} \mathrm{~d} u$		
	$\int \frac{\ln u}{(\ln 2)^{2}} \mathrm{~d} u=\frac{1}{(\ln 2)^{2}}\left(u \ln u-\int \mathrm{d} u\right)$	M1: Integrates by parts the right way around to obtain an expression of the form $a u \ln u-\int b \mathrm{~d} u$. Allow $a=1$ and/or $b=1$. A1: $\frac{1}{(\ln 2)^{2}}\left(u \ln u-\int \mathrm{d} u\right)$	M1A1
	$\int \frac{\ln u}{(\ln 2)^{2}} \mathrm{~d} u=\frac{1}{(\ln 2)^{2}}(u \ln u-u)$	dM1: Completes to obtain an expression of the form ... $-k u$ $\text { A1: } \frac{1}{(\ln 2)^{2}}(u \ln u-u)$	dM1A1
	$\left[\frac{1}{(\ln 2)^{2}}(u \ln u-u)\right]_{1}^{4}=\frac{}{(1)}$ Uses the limits 1 and 4 and s	$\frac{}{2)^{2}}(4 \ln 4-4)-(\ln 1-1)$ tracts the right way round.	M1
	$=\frac{4 \ln 4-3}{(\ln 2)^{2}}$	Correct simplified fraction. Allow equivalent simplified forms $\text { e.g. } \frac{\ln 256-3}{(\ln 2)^{2}}, \frac{\ln 2^{8}-3}{(\ln 2)^{2}},$ Allow denominator as $(\ln 2)(\ln 2)$ and $\ln ^{2} 2$ but not as $\ln 2^{2}$	A1

	Attempts at squaring in (b)		
	$(x-a)^{2}=\left(\frac{1}{2} x+b\right)^{2}$		
	$(x-a)^{2}=\left(\frac{1}{2} x+b\right)^{2} \Rightarrow 3 x^{2}-4 x(2 a+b)+4\left(a^{2}-b^{2}\right)=0$ Squares both sides and obtains $3 \mathrm{TQ}=0$		M1
	$\begin{aligned} & x=\frac{4(2 a+b) \pm 4(a+2 b)}{6} \\ & \left(=2(a+b), \frac{2}{3}(a-b)\right) \end{aligned}$	Attempt to solve 3TQ applying usual rules	M1
		ddM1: Chooses inside region. Dependent on both previous M marks.	
	$\frac{2}{3}(a-b)<x<2(a+b)$	A1: Allow alternatives e.g. $x<2(a+b)$ and $x>\frac{2}{3}(a-b)$, $\left(\frac{2}{3}(a-b), 2(a+b)\right)$ but not $x<2(a+b), x>\frac{2}{3}(a-b)$ Expressions must have just one term in a and one term in b.	ddM1A1

Question Number	Scheme	Notes	Marks
7 (a)	Strip width = 1	May be implied by their trapezium rule.	B1
	$\begin{aligned} & \text { Area } \approx \frac{1}{2}\left(\frac{1}{\sqrt{9}}+\frac{1}{\sqrt{15}}+2\left(\frac{1}{\sqrt{11}}+\frac{1}{\sqrt{13}}\right)\right) \\ & \approx \frac{1}{2}(0.33 \ldots+0.25 \ldots+2(0.30 \ldots+0.27 \ldots)) \end{aligned}$	M1: Correct structure for the y values. Look for $(y$ at $x=2)+(y$ at $x=$ 5) +2 (sum of other y values). A1: Correct numerical expression. If decimals are used, look for awrt 1dp initially, however a correct final answer would imply this mark.	M1 A1
	Awrt 0.875		A1
			(4)
	May use separate trapezia:		
	Area $\approx \frac{1}{2}\left(\frac{1}{\sqrt{9}}+\frac{1}{\sqrt{11}}\right)+\frac{1}{2}\left(\frac{1}{\sqrt{11}}+\frac{1}{\sqrt{13}}\right)+\frac{1}{2}\left(\frac{1}{\sqrt{11}}+\frac{1}{\sqrt{15}}\right)$		
	B1: Strip width $=1$ M1: Correct structure for the y values as above A1: Correct expression as described above A1: Awrt 0.875		
(b)	$\int \frac{1}{\sqrt{2 x+5}} \mathrm{~d} x=(2 x+5)^{\frac{1}{2}}$	M1: $\int \frac{1}{\sqrt{2 x+5}} \mathrm{~d} x=k(2 x+5)^{\frac{1}{2}}$	M1A1
		A1: $\int \frac{1}{\sqrt{2 x+5}} \mathrm{~d} x=(2 x+5)^{\frac{1}{2}}$	
	$\int_{2}^{5} \frac{1}{\sqrt{2 x+5}} \mathrm{~d} x=(2(5)+5)^{\frac{1}{2}}-(2(2)+5)^{\frac{1}{2}}$	Substitutes 5 and 2 and subtracts the right way round. May be implied by the correct exact answer but not by a decimal answer only e.g. $0.8729 \ldots$ and not by work in decimals e.g. $3.872 \ldots-3$ unless the substitution of 5 and 2 is explicitly seen.	dM1
	$=\sqrt{15}-\sqrt{9}(=\sqrt{15}-3)$	$\sqrt{15}-\sqrt{9}$ or $\sqrt{15}-3$	A1
			(4)

	Alternative to (b) by substitution $u=2 x+5$		
	$u=2 x+5 \Rightarrow \int \frac{1}{\sqrt{2 x+5}} \mathrm{~d} x=\int \frac{1}{\sqrt{u}} \frac{1}{2} \mathrm{~d} u$	M1: $\int \frac{1}{\sqrt{2 x+5}} \mathrm{~d} x=k u^{\frac{1}{2}}$	M1A1
		A1: $\int \frac{1}{\sqrt{2 x+5}} \mathrm{~d} x=u^{\frac{1}{2}}$	
	$\int_{2}^{5} \frac{1}{\sqrt{2 x+5}} \mathrm{~d} x=(15)^{\frac{1}{2}}-(9)^{\frac{1}{2}}$	Substitutes 15 and 9 and subtracts the right way round. May be implied by the correct exact answer but not by a decimal answer only e.g. $0.8729 \ldots$ and not by work in decimals e.g. 3.872... -3 unless the substitution of 15 and 9 is explicitly seen.	dM1
	$=\sqrt{15}-\sqrt{9}(=\sqrt{15}-3)$	$\sqrt{15}-\sqrt{9}$ or $\sqrt{15}-3$	A1
	Alternative to (b) by substitution $u=(2 x+5)^{\frac{1}{2}}$		
	$u=(2 x+5)^{\frac{1}{2}} \Rightarrow \int \frac{1}{u} \cdot u \mathrm{~d} u=\int u \mathrm{~d} u$	M1: $\int \frac{1}{\sqrt{2 x+5}} \mathrm{~d} x=k u$	M1A1
		A1: $\int \frac{1}{\sqrt{2 x+5}} \mathrm{~d} x=u$	
	$\int_{2}^{5} \frac{1}{\sqrt{2 x+5}} \mathrm{~d} x=(15)^{\frac{1}{2}}-(9)^{\frac{1}{2}}$	Substitutes $\sqrt{ } 15$ and 3 and subtracts the right way round. May be implied by the correct exact answer but not by a decimal answer only e.g. $0.8729 \ldots$ and not by work in decimals e.g. 3.872... -3 unless the substitution of $\sqrt{15}$ and 3 is explicitly seen.	dM1
	$=\sqrt{15}-\sqrt{9}(=\sqrt{15}-3)$	$\sqrt{15}-\sqrt{9}$ or $\sqrt{15}-3$	A1
(c)	$\begin{aligned} & \pm(\operatorname{correct}(a)-\operatorname{correct}(b))= \pm 0.002 \\ & \quad \text { or } \\ & \pm \frac{\operatorname{correct}(a)-\operatorname{correct}(b)}{\operatorname{correct}(b)} \times 100= \pm 0.2 \% \end{aligned}$	Finds the magnitude of the error and writes as ± 0.002 or $\pm 2 \times 10^{-3}$ or $\pm 0.2 \%$ Or finds the percentage error and writes as $\pm 0.2 \%$	B1
			(1)
			(9 marks)

Question Number	Scheme		Marks
9.(a)	$t=0 \Rightarrow P=\frac{9000}{3+7}=900$	M1: Sets $t=0$, may be implied by $e^{0}=1$ or may be implied by $\frac{9000}{3+7}$ or by a correct answer of 900 .	M1A1
		A1: 900	
			(2)
(b)	$t \rightarrow \infty \quad P \rightarrow \frac{9000}{3}=3000$	Sight of 3000	B1
			(1)
(c)	$t=4, P=2500 \Rightarrow 2500=\frac{9000 \mathrm{e}^{4 k}}{3 \mathrm{e}^{4 k}+7}$	Correct equation with $t=4$ and $P=2500$	B1
	$\mathrm{e}^{4 k}=\frac{17500}{1500}=(\mathrm{awrt} 11.7 \text { or } 11.6)$ or $\mathrm{e}^{-4 k}=\frac{1500}{17500}=(\text { awrt } 0.857)$	M1: Rearranges the equation to make $\mathrm{e}^{ \pm 4 k}$ the subject. They need to multiply by the $3 \mathrm{e}^{4 k}+7$ term, and collect terms in $\mathrm{e}^{4 k}$ or $\mathrm{e}^{-4 k}$ reaching $\mathrm{e}^{ \pm 4 k}=C$ where C is a constant. A1: Achieves intermediate answer of $\mathrm{e}^{4 k}=\frac{17500}{1500}=($ awrt 11.7 or 11.6$)$ or $\mathrm{e}^{-4 k}=\frac{1500}{17500}=($ awrt 0.857$)$	M1A1
	$k=\frac{1}{4} \ln \left(\frac{35}{3}\right)$ or awrt 0.614	dM1: Proceeds from $\mathrm{e}^{ \pm 4 k}=C, C>0$ by correctly taking ln's and then making k the subject of the formula. Award for e.g. $e^{4 k}=C \Rightarrow 4 k=\ln (C) \Rightarrow k=\frac{\ln (C)}{4}$	dM1A1
		A1: cao: Awrt 0.614 or the correct exact answer (or equivalent)	
			(5)
	Alternative correct work in (c):		
	$t=4, P=2500 \Rightarrow 2500=\frac{9000 \mathrm{e}^{4 k}}{3 \mathrm{e}^{4 k}+7}$	Correct equation with $t=4$ and $P=2500$	B1
	$7500 \mathrm{e}^{4 k}+17500=9000 \mathrm{e}^{4 k}$		
	$1500 \mathrm{e}^{4 k}=17500$		
	$\ln 1500+\ln \mathrm{e}^{4 k}=\ln 17500$	M1: Takes ln's correctly	M1A1
		A1: Correct equation	
	$\ln \mathrm{e}^{4 k}=\ln 17500-\ln 1500$		
	$4 k=\ln 17500-\ln 1500$		
	$k=\frac{\ln 17500-\ln 1500}{4}$	Makes k the subject	M1A1
	$k=\frac{1}{4} \ln \left(\frac{35}{3}\right)$ or awrt 0.614	cao: Awrt 0.614 or the correct exact answer (or equivalent)	

(d)	$\frac{\mathrm{d} P}{\mathrm{~d} t}=\frac{\left(3 e^{k t}+7\right) \times 9000 k e^{k t}-9000 e^{k t} \times 3 k e^{k t}}{\left(3 e^{k t}+7\right)^{2}}\left(=\frac{63000 k e^{k t}}{\left(3 e^{k t}+7\right)^{2}}\right)$ Differentiates using the quotient rule to achieve $\frac{\mathrm{d} P}{\mathrm{~d} t}=\frac{\left(3 e^{k t}+7\right) \times P e^{k t}-9000 e^{k t} \times Q e^{k t}}{\left(3 e^{k t}+7\right)^{2}}$ or $\frac{\mathrm{d} P}{\mathrm{~d} t}=9000 \mathrm{ke}^{k t}\left(3 \mathrm{e}^{k t}+7\right)^{-1}-9000 \mathrm{e}^{k t}\left(3 \mathrm{e}^{k t}+7\right)^{-2} \times 3 k \mathrm{e}^{k t}$ Differentiates using the product rule to achieve $\frac{\mathrm{d} P}{\mathrm{~d} t}=P \mathrm{e}^{k t}\left(3 \mathrm{e}^{k t}+7\right)^{-1}-9000 \mathrm{e}^{k t}\left(3 \mathrm{e}^{k t}+7\right)^{-2} \times Q \mathrm{e}^{k t}$ or $\frac{\mathrm{d} P}{\mathrm{~d} t}=63000 k \mathrm{e}^{-k t}\left(3+7 \mathrm{e}^{-k t}\right)^{-2}$ Differentiates using the chain rule on $P=9000\left(3+7 \mathrm{e}^{-k t}\right)^{-1}$ to achieve $\frac{\mathrm{d} P}{\mathrm{~d} t}= \pm D \mathrm{e}^{-k t}\left(3+7 \mathrm{e}^{-k t}\right)^{-2}$ Watch for $\mathrm{e}^{k t} \rightarrow k t \mathrm{e}^{k t}$ which is M0	M1
	Sub $t=10$ and $k=0.614 \Rightarrow \frac{\mathrm{~d} P}{\mathrm{~d} t}=\ldots \quad$Substitutes $t=10$ and their k to obtain a value for $\frac{\mathrm{d} P}{\mathrm{~d} t}$. If the value for $\frac{\mathrm{d} P}{\mathrm{~d} t}$ is incorrect then the substitution of $t=10$ must be seen explicitly.	dM1 (A1 on Epen)
	$\frac{\mathrm{d} P}{\mathrm{~d} t}=9$ Awrt 9 (NB $\left.\frac{\mathrm{d} P}{\mathrm{~d} t}=9.1694 \ldots\right)$	A1
		(3)
		(11 marks)

Question Number	Scheme	Marks
11 (a)	$\left(\begin{array}{l} 7 \\ 4 \\ 9 \end{array}\right)+\lambda\left(\begin{array}{l} 1 \\ 1 \\ 4 \end{array}\right)=\left(\begin{array}{c} -6 \\ -7 \\ 3 \end{array}\right)+\mu\left(\begin{array}{c} 5 \\ 4 \\ b \end{array}\right) \Rightarrow \begin{gathered} 7+1 \lambda=-6+5 \mu \\ 4+1 \lambda=-7+4 \mu \text { any two of } \\ 9+4 \lambda=3+b \mu \end{gathered}$ Writes down any two equations for the coordinates of the point of intersection. There must be an attempt to set the coordinates equal but condone slips.	M1
	Full method to find both λ and μ from equations 1 and 2 and uses these values and equation 3 to find a value for b	dM1
	(1) $-(2) \Rightarrow 3=1+\mu \Rightarrow \mu=2$	
	Sub $\mu=2$ into (1) $\Rightarrow 7+1 \lambda=-6+10 \Rightarrow \lambda=-3$	
	Put values in $3^{\text {rd }}$ equation $9-12=3+2 b \Rightarrow b=-3^{*}$ Completely correct work including $\lambda=-3, \mu=2$ and substitution into both sides of the third equation to give $b=-3$	A1
	Position vector of intersection is $\left(\begin{array}{l}7 \\ 4 \\ 9\end{array}\right)+-3\left(\begin{array}{l}1 \\ 1 \\ 4\end{array}\right)$ or $\left(\begin{array}{c}-6 \\ -7 \\ 3\end{array}\right)+2\left(\begin{array}{c}5 \\ 4 \\ -3\end{array}\right)$ Substitutes their value of λ into l_{1} to find the coordinates or position vector of the point of intersection. Alternatively substitutes their value of μ into l_{2} to find the coordinates or position vector of the point of intersection. May be implied by at least 2 correct coordinates for X	dM1
	$X=(4,1,-3) \quad$Correct coordinates or vector. Correct coordinates implies M1A1 Marks for finding the coordinates of X can score anywhere in the question.	A1
		(5)
	(b) Way 1	
(b)	$\pm \overrightarrow{X A}= \pm\left(\begin{array}{l} 2 \\ 2 \\ 8 \end{array}\right), \pm \overrightarrow{X B}= \pm\left(\begin{array}{r} 10 \\ 8 \\ -6 \end{array}\right) \quad \begin{aligned} & \text { Attempts the difference between the } \\ & \text { coordinates } X \text { and } A, X \text { and } B . \text { This } \\ & \text { could be implied by the calculation } \\ & \text { of the lengths } A X \text { and } B X . \text { Allow } \\ & \text { slips but must be subtracting. } \end{aligned}$	M1
	$\pm \overrightarrow{X A} . \pm \overrightarrow{X B}=\|X A\|\|X B\| \cos \theta \Rightarrow 20+16-48=\sqrt{72} \sqrt{200} \cos \theta$ M1: Attempt the scalar product of $\overrightarrow{X A}$ and $\overrightarrow{X B}$ or $\overrightarrow{A X}$ and $\overrightarrow{B X}$ or $\overrightarrow{X A}$ and $\vec{B} \vec{X}$ or $\vec{A} \vec{X}$ and $\overrightarrow{X B}$ Allow $\cos \theta=\frac{\left(\begin{array}{l}2 \\ 2 \\ 8\end{array}\right) \cdot\left(\begin{array}{r}10 \\ 8 \\ -6\end{array}\right)}{\sqrt{72} \sqrt{200}}$ for M1 but not A1 unless the numerator is evaluated A1: A correct un-simplified expression $20+16-48=\sqrt{72} \sqrt{200} \cos \theta$ oe	dM1A1
	$\cos \theta=\frac{-12}{\sqrt{72} \times \sqrt{200}} \Rightarrow \theta=\arccos \left(-\frac{1}{10}\right) * \begin{aligned} & \text { This is a given answer. There must } \\ & \text { be an intermediate line with } \cos \theta=. . \\ & \text { or } \theta=\ldots \end{aligned}$	A1*

(b) Way 2

$$
\begin{gathered}
\mathbf{d}_{1}=\left(\begin{array}{l}
1 \\
1 \\
4
\end{array}\right), \quad \mathbf{d}_{2}=\left(\begin{array}{r}
5 \\
4 \\
-3
\end{array}\right) \quad \begin{array}{l}
\text { Uses } b=-3 \text { and the direction vectors } \\
\text { or multiples of the direction } \\
\text { vectors }
\end{array} \\
\mathbf{d}_{1} \cdot \mathbf{d}_{2}=\left|\mathbf{d}_{1}\right|\left|\mathbf{d}_{2}\right| \cos \theta \Rightarrow 5+4-12=\sqrt{18} \sqrt{50} \cos \theta
\end{gathered}
$$

M1: Attempt the scalar product of the direction vectors
(b)

Allow $\cos \theta=\frac{\left(\begin{array}{l}1 \\ 1 \\ 4\end{array}\right) \cdot\left(\begin{array}{r}5 \\ 4 \\ -3\end{array}\right)}{\sqrt{18} \sqrt{50}}$ for M1 but not A1 unless the numerator is evaluated
A1: A correct un-simplified expression $5+4-12=\sqrt{18} \sqrt{50} \cos \theta$ oe

$$
\cos \theta=\frac{-3}{\sqrt{18} \times \sqrt{50}} \Rightarrow \theta=\arccos \left(-\frac{1}{10}\right) *
$$

This is a given answer. There must be an intermediate line with $\cos \theta=$.. A1* or $\theta=\ldots$

(b) Way 3

	(b) Way 3			
(b)	$\pm \overrightarrow{X A}= \pm\left(\begin{array}{l}2 \\ 2 \\ 8\end{array}\right), \pm \overrightarrow{X B}= \pm\left(\begin{array}{r}10 \\ 8 \\ -6\end{array}\right)$		Attempts the difference between the coordinates X and A, X and B. This could be implied by the calculation of the lengths $A X$ and $B X$. Allow slips but must be subtracting.	M1
	$\|A B\|^{2}=\|X A\|^{2}+\|X B\|^{2}-2\|X A\|\|X B\| \cos \theta \Rightarrow 8^{2}+6^{2}+14^{2}=72+200-2 \sqrt{72} \sqrt{200} \cos \theta$ M1: Uses $\vec{A} \vec{B}$ with a correct attempt at the cosine rule A1: A correct un-simplified expression $8^{2}+6^{2}+14^{2}=72+200-2 \sqrt{72} \sqrt{200} \cos \theta$ oe			dM1A1
	$\cos \theta=\frac{-24}{2 \sqrt{72} \times \sqrt{200}} \Rightarrow \theta=\arccos ($		This is a given answer. There must be an intermediate line with $\cos \theta=$.. or $\theta=\ldots$	A1*
(c)	$\cos \theta=-\frac{1}{10} \Rightarrow \sin \theta=\frac{\sqrt{99}}{10}$		oe e.g. $\sqrt{\frac{99}{100}}, \frac{3 \sqrt{11}}{10}$. May be implied by a correct exact area.	
	$\begin{gathered} \text { Area of triangle }=\frac{1}{2} X A \times X B \times \sin \theta \quad A=\frac{1}{2} \times 6 \sqrt{2} \times 10 \sqrt{2} \times \frac{3 \sqrt{11}}{10} \\ \text { Uses Area of triangle }=\frac{1}{2} X A \times X B \times \sin \theta \end{gathered}$ This mark can be scored for e.g. $\frac{1}{2}$ (their $\left.X A\right) \times($ their $X B) \times \sin \left(\cos ^{-1}\left(-\frac{1}{10}\right)\right)$ or $\frac{1}{2}(\text { their } X A) \times(\text { their } X B) \times \sin (95.7391 \ldots)$ Must be using the angle given by $\cos ^{-1}\left(-\frac{1}{10}\right)$			
	$A=18 \sqrt{11}$ oe		cept for example $A=9 \sqrt{44}, \sqrt{3564}$	
	Note that $A=\frac{1}{2} \times 6 \sqrt{2} \times 10 \sqrt{2} \times \sin (95.7391 \ldots)=18 \sqrt{11}$ scores all 3 marks			
				(3)
				2 marks)

Question Number	Scheme		Marks
12.(a)	$V=\int y^{2} \mathrm{~d} x=\int y^{2} \frac{\mathrm{~d} x}{\mathrm{dt}} \mathrm{~d} t=\int(2 \sin 2 t)^{2} 3 \cos t \mathrm{~d} t$ M1: Attempts $\int y^{2} \mathrm{~d} x=\int y^{2} \frac{\mathrm{~d} x}{\mathrm{~d} t} \mathrm{~d} t$ where $\frac{\mathrm{d} x}{\mathrm{~d} t}= \pm k \cos t$ May be implied by e.g. $\int(2 \sin 2 t)^{2} 3 \cos t$ A1: $=\int(2 \sin 2 t)^{2} 3 \cos t(\mathrm{~d} t)(\mathrm{d} t$ can be missing as long as the M is scored)		M1A1
	$=\int(4 \sin t \cos t)^{2} 3 \cos t \mathrm{dt}$	Uses $\sin 2 t=2 \sin t \cos t$	M1
	$x=\frac{3}{2} \Rightarrow t=\frac{\pi}{6}$ or $k=48$	Correct value for a (must be exact) or a correct value for k	B1
	$V=\int \pi y^{2} \mathrm{~d} x=48 \pi \int_{0}^{\frac{\pi}{6}} \sin ^{2} t \cos ^{3} t \mathrm{~d} t^{*}$	Achieves printed answer including "d t " (even if lost earlier) with correct limits and 48π in place with no errors. Or achieves the printed answer with the letters a and k and states the correct values of a and k.	A1*
			(5)

Question Number	Scheme	Marks
13(a)	$\begin{gathered} V=\frac{1}{3} \pi h^{2}(30-h)=10 \pi h^{2}-\frac{1}{3} \pi h^{3} \Rightarrow \frac{\mathrm{~d} V}{\mathrm{~d} h}=20 \pi h-\pi h^{2} \\ \quad \text { or } \\ V=\frac{1}{3} \pi h^{2}(30-h) \Rightarrow \frac{\mathrm{d} V}{\mathrm{~d} h}=\frac{2}{3} \pi h(30-h)-\frac{1}{3} \pi h^{2} \end{gathered}$	M1A1
	M1: Attempts $\frac{\mathrm{d} V}{\mathrm{~d} h}$ either by multiplying out and differentiating each term to give a derivative of the form $\alpha h-\beta h^{2}$ or by the product rule to give a derivative of the form $\alpha h(30-h) \pm \beta h^{2}$. A1: Any correct (possibly un-simplified) form for $\frac{\mathrm{d} V}{\mathrm{~d} h}$	
	Uses $\frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{\mathrm{d} V}{\mathrm{~d} h} \times \frac{\mathrm{d} h}{\mathrm{~d} t} \Rightarrow-\frac{1}{10} V=\left(20 \pi h-\pi h^{2}\right) \times \frac{\mathrm{d} h}{\mathrm{~d} t}$	M1
	Uses a correct form of the chain rule, e.g. $\frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{\mathrm{d} V}{\mathrm{~d} h} \times \frac{\mathrm{d} h}{\mathrm{~d} t}$ or uses $\frac{\mathrm{d} h}{\mathrm{~d} V} \times \frac{\mathrm{d} V}{\mathrm{~d} t}$ with their $\frac{\mathrm{d} V}{\mathrm{~d} h}$ and $\frac{\mathrm{d} V}{\mathrm{~d} t}=-\frac{1}{10} V$.	
	$\Rightarrow-\frac{1}{10} \times \frac{1}{3} \pi h^{2}(30-h)=\pi h(20-h) \times \frac{\mathrm{d} h}{\mathrm{~d} t}\left(\Rightarrow \frac{\mathrm{~d} h}{\mathrm{~d} t}=\ldots\right)$	M1
	Substitutes $V=\frac{1}{3} \pi h^{2}(30-h)$ and rearranges to obtain $\frac{\mathrm{d} h}{\mathrm{~d} t}$ in terms of h	
	$\frac{\mathrm{d} h}{\mathrm{~d} t}=-\frac{h(30-h)}{30(20-h)} * \quad$This is a given answer. There must have been intermediate lines and correct factorisation and no errors and " $\frac{\mathrm{d} h}{\mathrm{~d} t}=$ "must be seen at some point.	A1*
		(5)
(b)	$\frac{30(20-h)}{h(30-h)} \equiv \frac{A}{h}+\frac{B}{30-h} \quad$ Correct form for the partial fractions	B1
	$\begin{gathered} 30(20-h) \equiv A(30-h)+B h \\ h=30 \Rightarrow 30 B=-300 \Rightarrow B=-10 \text { and } h=0 \Rightarrow 30 A=600 \Rightarrow A=20 \end{gathered}$ Attempts to get both constants by a correct method e.g. substituting, comparing coefficients, cover up rule	M1
	$\frac{30(20-h)}{h(30-h)} \equiv \frac{20}{h}-\frac{10}{30-h}$ Correct partial fractions (or states $" A "=20, " B "=-10)$	A1
		(3)

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London WC2R ORL

