

Mark Scheme (Results)

Summer 2016

Pearson Edexcel IAL in Core Mathematics 34 (WMA02/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2016 Publications Code WMA02_01_1606_MS All the material in this publication is copyright © Pearson Education Ltd 2016

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 125
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- L or d... The second mark is dependent on gaining the first mark

- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

 $(x^2+bx+c) = (x+p)(x+q)$, where pq = |c|, leading to $x = \dots$

 $(ax^2+bx+c) = (mx+p)(nx+q)$, where pq = |c| and |mn| = |a|, leading to $x = \dots$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by $1.(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

<u>Use of a formula</u>

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Question Number	Scheme	Notes	Marks
1.(a)	$R = \sqrt{34}$	Cao (Must be exact but score when first seen and ignore decimal value (5.83))	B1
	$\tan \alpha = \pm \frac{5}{3}, \tan \alpha =$ (Allow $\cos \alpha = \pm \frac{5}{\sqrt{34}}$ or $\pm \frac{3}{\sqrt{34}}$, sin Where $\sqrt{34}$ is	$\alpha = \pm \frac{5}{\sqrt{34}} \text{ or } \pm \frac{3}{\sqrt{34}} \Rightarrow \alpha = \dots)$	M1
	$\alpha = 59.04^{\circ}$	awrt 59.04°	A1
			(3)
(b)	$\sqrt{34}\cos(\theta - 59.04) = 2 \Rightarrow \cos(\theta - 59.04) = 2 \Rightarrow \cos(\theta - 59.04) = 2 \Rightarrow \cos(\theta - 59.04) = \cos(\theta \pm 59.04) = \cos(\theta \pm 59.04) = 69.94.$ May be implied by $\theta - 59.04 = 69.94$. The $\theta - 59.04$ must be see	P - "59.04") = 2 and proceeds to = K, $ K $, 1 ° or θ - "59.04" cos ⁻¹ $\left(\frac{2}{\text{their}\sqrt{34}}\right)$ en here or implied later	M1
	$\theta_1 - 59.04 = 69.94 \Longrightarrow$	$\theta_1 = $ awrt 129.0°	A1
	$\theta_2 \pm 59.04 = 360 - 6$ Correct attempt at a second It is dependent upon having Usually for θ -their 59.04 = 30	solution in the range. scored the previous M.	dM1
	$\theta_2 = 349.1^{\circ}$	awrt 349.1°	A1
	For solutions in (b) that are otherwise fully co deduct the fina		
			(4)
(c)	θ + their 59.04 = cos ⁻¹ $\left(\frac{2}{100000000000000000000000000000000000$	$\left(\frac{1}{b}\right) \Rightarrow \theta = \dots$ if they have $\theta + \dots$ in (b) and (b) to obtain a value for θ . This can	M1
	$\theta = 10.9^{\circ}$	awrt 10.9	A1
			(2)
			(9 marks)

Question Number	Scheme	Notes	Mark
2	$\frac{d(4x\sin x)}{dx} = 4x\cos x + 4\sin x$	Applies product rule to $4x \sin x$ to give $\frac{d(4x \sin x)}{dx} = \pm 4x \cos x + 4 \sin x$	M1
	$\frac{\mathrm{d}\left(\piy^{2}\right)}{\mathrm{d}y} = 2\piy\frac{\mathrm{d}y}{\mathrm{d}x}$	Applies chain rule to πy^2 to give $\frac{d(\pi y^2)}{dy} = Ay \frac{dy}{dx}$	M1
	Accept $4x \cos x dx + 4$	ifferentiation. oe $\sin x dx = 2\pi y dy + 2 dx$	A1
	For the differentiation ig	nore any spurious " $\frac{dy}{dx} =$ "	
	Alternative for first 3 marks	using explicit differentiation:	
	$y = \left(\frac{1}{\sqrt{\pi}}\right) (4$	$(x \sin x - 2x)^{\frac{1}{2}}$	
	M1: $\frac{d(4x \sin x)}{dx} = \pm 4x$ M1: $(4x \sin x - 2x)^{\frac{1}{2}}$	$\frac{4x \sin x - 2x)^{\frac{1}{2}}}{x)^{-\frac{1}{2}} (4x \cos x + 4 \sin x - 2)}$ $\cos x + 4 \sin x \text{ (as before)}$ $\rightarrow k (4x \sin x - 2x)^{-\frac{1}{2}}$	M1 M1
		rs when rearranging for the M marks	
	$\frac{dy}{dx} = \frac{1}{2\sqrt{\pi}} (4x\sin x - 2x)$	$\frac{1}{2}(4x\cos x + 4\sin x - 2)$ oe	A1
	$x = \frac{\pi}{2}, y = 1$ $\Rightarrow 4 = 2\pi \frac{dy}{dx} + 2 \Rightarrow \frac{dy}{dx} = \dots \left(\frac{1}{\pi}\right)$	Uses $x = \frac{\pi}{2}$ and $y = 1$ to obtain a value for $\frac{dy}{dx}$ (may be implied). For implicit differentiation, there must be a dy/dx and there must be x's and y's. Explicit differentiation just requires use of $x = \frac{\pi}{2}$.	M1
	(π)	π^2	
	Must use $-1/(\text{their } \frac{dy}{dx})$ and $x = \frac{\pi}{2}$	$x = \frac{\pi}{2}, y = 1$ to find equation of normal. $\frac{\pi}{2}$ and $y = 1$ must be correctly placed.	M1
	Uses normal gradient $-1/\frac{dy}{dx}$ and x Must use $-1/\left(\text{their } \frac{dy}{dx}\right)$ and $x = \frac{\pi}{2}$	$x = \frac{\pi}{2}, y = 1$ to find equation of normal.	M1 A1cso

Question Number	Scheme	Notes	Marks
3 (a)	$(1+ax)^{-3} = 1 + (-3)(ax) + \frac{(-3)(-4)(-4)(-3)(-4)(-3)(-4)}{(-3)(-4)(-4)(-3)(-3)(-4)(-3)(-3)(-4)(-3)(-3)(-4)(-3)(-3)(-4)(-3)(-3)(-3)(-3)(-3)(-3)(-3)(-3)(-3)(-3$	$\frac{4}{(ax)^2} + \frac{(-3)(-4)(-5)}{3!}(ax)^3 + \dots$	
	2:	1 with $n = -3$ and $x' = ax$.	
		t can be scored for a correct 3 rd or 4 th	M1
	term e.g. $\frac{(-3)(-4)}{2!}(ax)$	$(-3)(-4)(-5)(-3)^3$	
	$=1-3ax+6a^2x^2-10a^3x^3+$	A1: Three of the four terms correct	
	or	and simplified A1: All four terms correct and	A1A1
	$= 1 - 3ax + 6(ax)^2 - 10(ax)^3 + \dots$	simplified and seen in part (a).	
(b)	2+3x	2 2 2 2 2	(3)
	$f(x) = \frac{2+3x}{(1+ax)^3} = (2+3x)$	$(1-3ax+6a^2x^2-10a^3x^3)$	
	Writes $f(x) as (2+3x)(1-3ax+6a)$	$x^{2}x^{2} - 10a^{3}x^{3}$) using their expansion	
		by their expansion. Do not condone	M1
		c or part(a) unless their presence is ecover in (b) from missing brackets in	
	(a) e.g. ax^2 now	becoming a^2x^2	
	NB $f(x) = 2 + (3 - 6a)x + (12)$	$2a^2 - 9a)x^2 + (18a^2 - 20a^3)x^3$	
		Multiplies out and sets their coefficient of x^2 (which comes from	
	$12a^2 - 9a = 3$	exactly 2 terms from their	dM1
		expansion – the two terms may have been combined earlier) = 3 .	
	$4a^2 - 3a - 1 = (4a)^2$	$(a-1) \Rightarrow a = \dots$	
	÷	. If working is shown see general working is shown then you may need	ddM1
	÷	heir quadratic is incorrect.	
	1	Cao. Accept equivalent answers but must come from the correct	
	$a = -\frac{1}{4}$	quadratic and must be clearly	A1
		identified.	(4)
(c)		Subs their $a = -\frac{1}{4}$ (positive or	(4)
	$18\left(-\frac{1}{4}\right)^2 - 20\left(-\frac{1}{4}\right)^3$	т	M1
	$10(-\frac{-1}{4}) - 20(-\frac{-1}{4})$	negative) into their coefficient of x^3 (which comes from exactly 2 terms	1011
		from their expansion)	
	Coefficient of x^3 is $\frac{23}{16}$	Cao. Allow $\frac{23}{16}x^3$	A1
			(2)
			9 marks

Question Number	Scheme	Notes	Marks
4 (a)	$x^{2} + x - 12 \overline{)x^{4}} +$	$\frac{x^2 + 5}{x^3 - 7x^2 + 8x - 48}$	
		$x^{3}-12x^{2}$	
		$5x^2 + 8x - 48$	
		$5x^2 + 5x - 60$	M1A1
		3x + 12	
		by $x^2 + x - 12$ to get a quadratic quotient + β where α and β are not both zero	
	A1: Correct quot	ient and remainder	
	Writes the	$x^{2} + 5 + \frac{3(x+4) \text{ or } 3x+12}{(x+4)(x-3)}$ For answer as the provided of the two provided on the two provided equations are as the two	M1
	$\equiv x^2 + 5 + \frac{3}{(x-3)}$	or states $A = 5$, $B = 3$	A1
			(4)

Alternatives to part (a) by dividing by linear factors	
M1: Divides by $(x - 3)$ first then divides by $(x + 4)$: $(x^4 + x^3 - 7x^2 + 8x - 48) \div (x - 3)$: $Q_1 = x^3 + 4x^2 + 5x + 23$, $R_1 = 21$ $(x^3 + 4x^2 + 5x + 23) \div (x + 4)$: $Q_2 = x^2 + 5$, $R_2 = 3$ For the M1, first division requires Q_1 to be a cubic and R_1 a constant and the second division to give a quadratic Q_2 and constant R_2 A1: Correct quotients and remainders	M1A1
$\frac{x^{4} + x^{3} - 7x^{2} + 8x - 48}{(x+4)(x-3)} \equiv x^{2} + 5 + \frac{3}{x+4} + \frac{21}{(x-3)(x+4)}$ Writes their answer as $Q_{2} + \frac{R_{2}}{x+4} + \frac{R_{1}}{(x-3)(x+4)}$ $\equiv x^{2} + 5 + \frac{3}{(x-3)} \text{ or states } A = 5, B = 3$	M1
M1: Divides by $(x + 4)$ first then divides by $(x - 3)$:	AI
$(x^{4} + x^{3} - 7x^{2} + 8x - 48) \div (x + 4) \text{ inst then divides by } (x - 3) \text{ :} $ $(x^{4} + x^{3} - 7x^{2} + 8x - 48) \div (x + 4) \text{ :} Q_{1} = x^{3} - 3x^{2} + 5x - 12, R_{1} = 0$ $(x^{3} - 3x^{2} + 5x - 12) \div (x - 3) \text{ :} Q_{2} = x^{2} + 5, R_{2} = 3$ For the M1, first division requires Q_{1} to be a cubic and R_{1} a constant and the second division to give a quadratic Q_{2} and constant R_{2} A1: Correct quotients and remainders	M1A1
$\frac{x^4 + x^3 - 7x^2 + 8x - 48}{(x+4)(x-3)} \equiv x^2 + 5 + \frac{3}{x-3}(+0)$ Writes their answer as $Q_2 + \frac{R_2}{x-3} + \frac{R_1}{(x-3)(x+4)}$	M1
$\equiv x^2 + 5 + \frac{3}{(x-3)}$ or states $A = 5, B = 3$	A1

Alternative by com	paring coefficients	
$x^4 + x^3 - 7x^2 + 8x - 48 \equiv (x^2)^2$	$(x^{2} + A)(x^{2} + x - 12) + B(x + 4)$	
Multiplies through by $(x^2 + x - 1)$	2) to obtain correct lhs and one of	
$(x^2 + A)(x^2 + x - 12)$	or $B(x+4)$ on the rhs	M1
If $(x^2 + A)(x^2 + x - 12)$ is	expanded, must see both	
$x^{2}(x^{2}+x-12)$	$+A(x^{2}+x-12)$	
2 correct	-	A1
e.g. $x^2 \Rightarrow A - 12 = -7$, $x \Rightarrow A + B$		
A = 5, B = 3	M1: Solves to obtain one of <i>A</i> or <i>B</i> A1: Both values correct	M1A1
Alternative b	y substitution	
$x = 0 \Rightarrow 4 = A - \frac{B}{3}, x$ M1: Substitutes 2 values for	or x A1: 2 correct equations ution must satisfy the condition for	M1A1
A = 5, B = 3	M1: Solves to obtain one of <i>A</i> or <i>B</i> A1: Both values correct	M1A1

(b)	$g'(x) = 2x - \frac{3}{(x-3)^2}$	M1: $x^2 + A + \frac{B}{x-3} \rightarrow 2x \pm \frac{B}{(x-3)^2}$ A1: $x^2 + A + \frac{B}{x-3} \rightarrow 2x - \frac{B}{(x-3)^2}$ Follow through their <i>B</i> or the letter <i>B</i> or a made up <i>B</i> .	M1A1ft
	Specia		
	If they write $g(x)$ as $x^2 + 5 + \frac{3x+12}{(x-3)}$		
	as $2x$ + the quotient rule on $\frac{3x+12}{(x-3)}$	then the M mark is available but not	
	the A1ft. It must be the correct quoti linear ex	ent rule and the numerator must be a pression.	
	$g'(4) = 2 \times 4 - \frac{3}{(4-3)^2} (=5)$	Substitutes $x = 4$ into their derivative	M1
	Uses $m = g'(4) = (5)$ with (4, g(4))	() = (4, 24) to form eqn of tangent	
	y-24=5(x-4)	Correct method of finding an equation of the tangent. The gradient must be $g'(4)$ and the point must be an attempt on $(4, g(4))$	M1
	y = 5x + 4	Cso. This mark may be withheld for an incorrect " <i>A</i> " earlier or any incorrect work leading to a correct gradient.	A1
			(5)
			(9 marks)
	(2) (3) (2) (3)	(b) for first 3 marks (2) (4) (3) = 2 (2) (2) (2) (2)	
	$g'(x) = (x^2 + x - 12)(4x^3 + 3x^2 - 14x - 12)(4x^3 + 3x^2 - 14x - 1$	$\frac{(x^{+} + x^{-}) - (x^{+} + x^{-}) - 7x^{2} + 8x - 48)(2x + 1)}{(2x + 1)^{2}}$	
	M1: Correct use of the quotient ru		M1A1
	-	formula quoted and attempted.	
	A1: Correc		
	$g'(4) = \frac{8 \times 256 - 192 \times 9}{8^2} (=5)$	Substitutes $x = 4$ into their derivative	M1

Question Number	Scheme	Notes	Marks
	Note that 2^x can be replaced by $e^{x \ln 2}$	6	
	"dx" thro		
5		M1: Integrates by parts the right way around to obtain an expression	
		of the form $ax2^x - \int b2^x dx$.	
	$\int x 2^x \mathrm{d}x = x \frac{2^x}{\ln 2} - \int \frac{2^x}{\ln 2} \mathrm{d}x$	Allow $a = 1$ and/or $b = 1$.	M1A1
		A1: $x \frac{2^x}{\ln 2} - \int \frac{2^x}{\ln 2} dx$	
		(Does not need to be seen all on one line)	
		dM1: Completes to obtain an	
	$\int 2^x + 2^x + 2^x$	expression of the form $\dots -k2^x$	
	$\int x 2^{x} dx = x \frac{2^{x}}{\ln 2} - \frac{2^{x}}{(\ln 2)^{2}}$	A1: $x \frac{2^{x}}{\ln 2} - \frac{2^{x}}{(\ln 2)^{2}}$	dM1A1
	$\left[x\frac{2^{x}}{\ln 2} - \frac{2^{x}}{(\ln 2)^{2}}\right]_{0}^{2} = \left(\frac{2 \times 2^{2}}{\ln 2} - \frac{2^{x}}{(\ln 2)^{2}}\right)_{0}^{2}$	$\frac{2^{2}}{(\ln 2)^{2}} - \left(\frac{0 \times 2^{0}}{\ln 2} - \frac{2^{0}}{(\ln 2)^{2}}\right)$	
	Uses the limits 0 and 2 and su	btracts the right way round.	
	F(0) may be implie	ed by e.g. $\frac{1}{(\ln 2)^2}$	ddM1
	But $\left(\frac{2 \times 2^2}{\ln 2} - \frac{2^2}{\left(\ln 2\right)^2}\right) - (0)$ or ju	$\operatorname{ist}\left(\frac{2 \times 2^2}{\ln 2} - \frac{2^2}{\left(\ln 2\right)^2}\right) \text{ is } ddM0$	
	$\left(=\frac{8}{\ln 2}-\frac{4}{(\ln 2)}\right)$	$\frac{1}{(\ln 2)^2} + \frac{1}{(\ln 2)^2}$	
		Correct simplified fraction. Allow equivalent simplified forms	
	$=\frac{8\ln 2-3}{\left(\ln 2\right)^2}$	e.g. $\frac{\ln 256 - 3}{(\ln 2)^2}, \frac{\ln 2^8 - 3}{(\ln 2)^2}$	A1
		Allow denominator as $(ln2)(ln2)$ and ln^22 but not as $ln2^2$	
			(6 marks)

Alternative by	substitution:	
$u = 2^x \Longrightarrow \int x 2^x dx = \int \frac{\ln u}{\ln 2}.$	$u \cdot \frac{1}{u \ln 2} du = \int \frac{\ln u}{\left(\ln 2\right)^2} du$	
$\int \frac{\ln u}{\left(\ln 2\right)^2} \mathrm{d}u = \frac{1}{\left(\ln 2\right)^2} \left(u \ln u - \int \mathrm{d}u \right)$	M1: Integrates by parts the right way around to obtain an expression of the form $au \ln u - \int b du$. Allow $a = 1$ and/or $b = 1$. A1: $\frac{1}{(\ln 2)^2} \left(u \ln u - \int du \right)$	M1A1
$\int \frac{\ln u}{(\ln 2)^2} \mathrm{d}u = \frac{1}{(\ln 2)^2} (u \ln u - u)$	dM1: Completes to obtain an expression of the form ku A1: $\frac{1}{(\ln 2)^2}(u \ln u - u)$	dM1A1
$\left[\frac{1}{(\ln 2)^2}(u\ln u - u)\right]_1^4 = \frac{1}{(\ln 2)^2}$ Uses the limits 1 and 4 and su	12)	M1
$=\frac{4\ln 4-3}{\left(\ln 2\right)^2}$	Correct simplified fraction. Allow equivalent simplified forms e.g. $\frac{\ln 256-3}{(\ln 2)^2}, \frac{\ln 2^8-3}{(\ln 2)^2},$ Allow denominator as (ln2)(ln2) and ln ² 2 but not as ln2 ²	A1

Question Number	Scheme	Notes	Marks
6(a)(i)		V shape with vertex on <i>x</i> -axis but not at the origin.	B1
	(0, a) $(a, 0)$	 Correct V shape with (0, <i>a</i>) or just <i>a</i> and (<i>a</i>, 0) or just <i>a</i> marked in the correct places. Left branch must cross or touch the <i>y</i>-axis. Allow coordinates the wrong way round if marked in the correct place. 	B1
	· · · · ·	•	(2)
(a)(ii)		Their part (i) translated down (by any amount) but clearly not left or right, or the correct shape i.e. a V with the vertex in 4 th quadrant.	B1ft
(0,	(a-b)	A <i>y</i> -intercept of $a - b$ on the positive <i>y</i> -axis or intercepts of a - b and $a + b$ on the positive <i>x</i> - axis with $a + b$ to the right of $a - b$	B1
	a-b $a+b$	A fully correct diagram.	B1
			(3)
(b)	$x - a - b = \frac{1}{2}x \Longrightarrow x = \dots$	Solves $x - a - b = \frac{1}{2}x$ or solves	
	or $-x + a - b = \frac{1}{2}x \Longrightarrow x = \dots$	$-x + a - b = \frac{1}{2}x$ as far as $x = \dots$	M1
	$\frac{2}{x-a-b} = \frac{1}{2}x \Longrightarrow x = \dots$	Allow < or > for =. Solves $x - a - b = \frac{1}{2}x$ and solves	
	and $-x + a - b = \frac{1}{2}x \Longrightarrow x = \dots$	$-x+a-b = \frac{1}{2}x$ as far as $x = \dots$	M1
	2	Allow < or > for =.	
		1: Chooses inside region.	
		Allow alternatives e.g.	
	<i>x</i> < 2	$2(a+b)$ and $x > \frac{2}{3}(a-b)$,	
	$\frac{2}{3}(a-b) < x < 2(a+b) \qquad x < 2$	$2(a+b) \cap x > \frac{2}{3}(a-b),$	ddM1A1
		(a-b), 2(a+b) but not	
	x < 2	$2(a+b), x > \frac{2}{3}(a-b)$	
			(4)
			(9 marks)

Attempts at squa	ring in (b)	
$\left(x-a\right)^2 = \left(\frac{1}{2}\right)^2$	$(x+b)^2$	
$(x-a)^{2} = \left(\frac{1}{2}x+b\right)^{2} \Rightarrow 3x^{2}-4x$ Squares both sides and		M1
$x = \frac{4(2a+b)\pm 4(a+2b)}{6}$ $\left(=2(a+b), \frac{2}{3}(a-b)\right)$	Attempt to solve 3TQ applying usual rules	M1
$\frac{2}{3}(a-b) < x < 2(a+b)$	ddM1: Chooses inside region. Dependent on both previous M marks. A1: Allow alternatives e.g. $x < 2(a+b)$ and $x > \frac{2}{3}(a-b)$, $\left(\frac{2}{3}(a-b), 2(a+b)\right)$ but not $x < 2(a+b), x > \frac{2}{3}(a-b)$ Expressions must have just one term in <i>a</i> and one term in <i>b</i> .	ddM1A1

Question Number	Scheme	Notes	Marks
7 (a)	Strip width = 1	May be implied by their trapezium rule.	B1
	Area $\approx \frac{1}{2} \left(\frac{1}{\sqrt{9}} + \frac{1}{\sqrt{15}} + 2 \left(\frac{1}{\sqrt{11}} + \frac{1}{\sqrt{13}} \right) \right)$ $\approx \frac{1}{2} (0.33+0.25+2(0.30+0.27))$	M1: Correct structure for the y values. Look for (y at $x = 2$) + (y at $x = 5$) + 2(sum of other y values). A1: Correct numerical expression. If decimals are used, look for awrt 1dp initially, however a correct final answer would imply this mark.	M1 A1
	Awrt 0.875		A1
			(4)
	May use separate	trapezia:	
	Area $\approx \frac{1}{2} \left(\frac{1}{\sqrt{9}} + \frac{1}{\sqrt{11}} \right) + \frac{1}{2} \left(\frac{1}{\sqrt{11}} + \frac{1}{\sqrt{11}} \right)$	$-\frac{1}{\sqrt{13}}\right) + \frac{1}{2}\left(\frac{1}{\sqrt{11}} + \frac{1}{\sqrt{15}}\right)$	
	B1: Strip widt M1: Correct structure for th A1: Correct expression as A1: Awrt 0.	e y values as above s described above	
(b)	$\int \frac{1}{\sqrt{2x+5}} dx = (2x+5)^{\frac{1}{2}}$	M1: $\int \frac{1}{\sqrt{2x+5}} dx = k(2x+5)^{\frac{1}{2}}$ A1: $\int \frac{1}{\sqrt{2x+5}} dx = (2x+5)^{\frac{1}{2}}$	MIA1
	$\int_{-\frac{1}{\sqrt{2x+5}}}^{5} \frac{1}{dx} = (2(5)+5)^{\frac{1}{2}} - (2(2)+5)^{\frac{1}{2}}$	Substitutes 5 and 2 and subtracts the right way round. May be implied by the correct exact answer but not by a decimal answer only e.g. 0.8729 and not by work in decimals	dM1
	2	e.g. 3.8723 unless the substitution of 5 and 2 is explicitly seen.	
	2	substitution of 5 and 2 is	A1

	Alternative to (b) by subs	titution $u = 2x + 5$	
	$u = 2x + 5 \Longrightarrow \int \frac{1}{\sqrt{2x+5}} \mathrm{d}x = \int \frac{1}{\sqrt{u}} \frac{1}{2} \mathrm{d}u$	M1: $\int \frac{1}{\sqrt{2x+5}} dx = ku^{\frac{1}{2}}$ A1: $\int \frac{1}{\sqrt{2x+5}} dx = u^{\frac{1}{2}}$	M1A1
	$\int_{2}^{5} \frac{1}{\sqrt{2x+5}} dx = (15)^{\frac{1}{2}} - (9)^{\frac{1}{2}}$	Substitutes 15 and 9 and subtracts the right way round. May be implied by the correct exact answer but not by a decimal answer only e.g. 0.8729 and not by work in decimals e.g. 3.8723 unless the substitution of 15 and 9 is explicitly seen.	dM1
	$=\sqrt{15}-\sqrt{9}(=\sqrt{15}-3)$	$\sqrt{15} - \sqrt{9} \text{ or } \sqrt{15} - 3$	A1
	Alternative to (b) by substi	tution $u = (2x+5)^{\frac{1}{2}}$	
	$u = (2x+5)^{\frac{1}{2}} \Longrightarrow \int \frac{1}{u} \cdot u \mathrm{d}u = \int u \mathrm{d}u$	M1: $\int \frac{1}{\sqrt{2x+5}} dx = ku$ A1: $\int \frac{1}{\sqrt{2x+5}} dx = u$	M1A1
	$\int_{2}^{5} \frac{1}{\sqrt{2x+5}} dx = (15)^{\frac{1}{2}} - (9)^{\frac{1}{2}}$	Substitutes $\sqrt{15}$ and 3 and subtracts the right way round. May be implied by the correct exact answer but not by a decimal answer only e.g. 0.8729 and not by work in decimals e.g. 3.8723 unless the substitution of $\sqrt{15}$ and 3 is explicitly seen.	dM1
	$=\sqrt{15}-\sqrt{9}(=\sqrt{15}-3)$	$\sqrt{15} - \sqrt{9} \text{ or } \sqrt{15} - 3$	A1
(c)	$\pm (\operatorname{correct}(a) - \operatorname{correct}(b)) = \pm 0.002$ or $\pm \frac{\operatorname{correct}(a) - \operatorname{correct}(b)}{\operatorname{correct}(b)} \times 100 = \pm 0.2\%$	Finds the magnitude of the error and writes as ± 0.002 or $\pm 2 \times 10^{-3}$ or $\pm 0.2\%$ Or finds the percentage error and writes as $\pm 0.2\%$	B1
			(1) (0 marks)
			(9 marks)

Question Number	Scheme		Marks
8 (a)	$\sin 2x - \tan x \equiv 2\sin x \cos x - \frac{\sin x}{\cos x}$	Uses a correct identity for $\sin 2x$	M1
	$\equiv \frac{2\sin x \cos x \cos x}{\cos x} - \frac{\sin x}{\cos x}$	Obtains common denominator. This is NOT dependent upon the previous M so accept expressions like, $\sin 2x - \tan x \equiv \sin 2x - \frac{\sin x}{\cos x}$ $= \frac{\sin 2x \cos x - \sin x}{\cos x}$	M1
	$\equiv \frac{2\cos^2 x \sin x - \sin x}{\cos x}$	Correct fraction with just $\sin x$ and $\cos x$	A1
	$\equiv \frac{(2\cos^2 x - 1)\sin x}{\cos x} \equiv \cos 2x \tan x^*$	Uses a correct identity for $\cos 2x$ and completes correctly with no errors. An error could be for example, mixed variables used or loss of an <i>x</i> along the way.	A1*
			(4)
	Alternative 1 f	or (a)	
	$\sin 2x - \tan x \equiv 2\sin x \cos x - \frac{\sin x}{\cos x}$	Uses a correct identity for $\sin 2x$	M1
	$\frac{\sin x}{\cos x} \left(2\cos^2 x - 1 \right)$	M1: Takes out a factor of $\frac{\sin x}{\cos x}$ A1: Correct expression	M1A1
	$\equiv \tan x \cos 2x^*$	Completes correctly with no errors.	A1*
	Alternative 2 f	for (a)	
	$2\sin x \cos x - \frac{\sin x}{\cos x} \equiv \frac{\sin x}{\cos x} (\cos^2 x - \sin^2 x)$	Uses a correct identity for $\sin 2x$	M1
	$2\sin x \cos^2 x - \sin x \equiv \sin x \left(\cos^2 x - \sin^2 x\right)$	Multiplies both sides by cos <i>x</i>	M1
	$2\cos^2 x - 1 \equiv \left(\cos^2 x - \sin^2 x\right)$	Correct identity	A1
	This is true*	Conclusion provided	A1*
	Alternative 3 f $\tan x \cos 2x \equiv \frac{\sin x}{\cos x} (2\cos^2 x - 1)$	or (a) Uses a correct identity for cos2x	M1
		-	1/11
	$\equiv 2\sin x \cos x - \frac{\sin x}{\cos x}$	M1: Multiplies out A1: Correct expression	M1A1
	$\equiv \sin 2x - \tan x^*$	A1: Obtains lhs with no errors	A1*

8(b)(i)	$\sin 2\theta - \tan \theta = \sqrt{3}\cos 2\theta$	$\Rightarrow \tan\theta\cos 2\theta = \sqrt{3}\cos 2\theta$	
	$\tan \theta = \sqrt{3} \Rightarrow \theta = \frac{\pi}{3} = (\operatorname{awrt} 1.05)$	M1: $\tan \theta = \pm \sqrt{3} \Rightarrow \theta =$ A1: $\theta = \frac{\pi}{3}$ Accept awrt 1.05. Ignore solutions outside the range but withhold the A mark for extra solutions in range.	M1A1
	$\cos 2\theta = 0 \Rightarrow \theta = \frac{\pi}{4} (awrt \ 0.785)$	in range. M1: $\cos 2\theta = 0 \Rightarrow \theta =$ A1: $\theta = \frac{\pi}{4}$ Accept awrt 0.785. Ignore solutions outside the range but withhold the A mark for extra solutions in range.	M1A1
(b)(ii)	$\tan(\theta+1)\cos(2\theta+2) - \sin(2\theta+2) = 2 \Longrightarrow \tan(\theta+1) = -2$ M1: $\tan(\theta+1) = \pm 2$		M1
	$\Rightarrow \theta = \arctan(-2) - 1$	Correct order of operations i.e. $\theta = \arctan(\pm 2) - 1$. This may be implied by $\theta = -2.1$	dM1
	$\Rightarrow \theta = 1.03$	awrt $\theta = 1.03$. Ignore solutions outside the range but withhold the A mark for extra solutions in range.	A1
			(7) (11 marks)

Question Number	S	Scheme	Marks
9.(a)	$t = 0 \Longrightarrow P = \frac{9000}{3+7} = 900$	M1: Sets $t = 0$, may be implied by $e^0 = 1$ or may be implied by $\frac{9000}{3+7}$ or by a correct answer of 900. A1: 900	M1A1
			(2)
(b)	$t \to \infty P \to \frac{9000}{3} = 3000$	Sight of 3000	B1
			(1)
(c)	$t = 4, P = 2500 \Rightarrow 2500 = \frac{9000e^{4k}}{3e^{4k} + 7}$	Correct equation with $t = 4$ and $P = 2500$	B1
	$e^{4k} = \frac{17500}{1500} = (awrt 11.7 or 11.6)$ or $e^{-4k} = \frac{1500}{17500} = (awrt 0.857)$	M1: Rearranges the equation to make $e^{\pm 4k}$ the subject. They need to multiply by the $3e^{4k} + 7$ term, and collect terms in e^{4k} or e^{-4k} reaching $e^{\pm 4k} = C$ where C is a constant. A1: Achieves intermediate answer of $e^{4k} = \frac{17500}{1500} = (awrt 11.7 \text{ or } 11.6) \text{ or}$ $e^{-4k} = \frac{1500}{17500} = (awrt 0.857)$	M1A1
	$k = \frac{1}{4} \ln\left(\frac{35}{3}\right) $ or awrt 0.614	d M1: Proceeds from $e^{\pm 4k} = C$, $C > 0$ by correctly taking ln's and then making k the subject of the formula. Award for e.g. $e^{4k} = C \Rightarrow 4k = \ln(C) \Rightarrow k = \frac{\ln(C)}{4}$ A1: cao: Awrt 0.614 or the correct exact answer (or equivalent)	d M1A1
			(5)
	$t = 4, P = 2500 \Rightarrow 2500 = \frac{9000e^{4k}}{3e^{4k} + 7}$	correct work in (c): Correct equation with t = 4 and $P = 2500$	B1
	$7500e^{10} + 17500 = 9000e^{10}$		
	$\frac{1500e^{4k}}{\ln 1500} = 17500$ $\ln 1500 + \ln e^{4k} = \ln 17500$	M1: Takes In's correctly A1: Correct equation	- M1A1
	$\ln e^{4k} = \ln 17500 - \ln 1500$		
	$4k = \ln 17500 - \ln 1500$ $k = \frac{\ln 17500 - \ln 1500}{4}$	Makes k the subject	M1A1
	$k = \frac{1}{4} \ln\left(\frac{35}{3}\right) $ or awrt 0.614	cao: Awrt 0.614 or the correct exact answer (or equivalent)	

(d)	$\frac{\mathrm{d}P}{\mathrm{d}t} = \frac{(3e^{kt} + 7) \times 9000ke^{kt} - 9000ke^{kt}}{1000ke^{kt}} + 9000ke^{kt} - 9000ke$	$\frac{9000e^{kt} \times 3ke^{kt}}{2} \left(= \frac{63000ke^{kt}}{(3e^{kt}+7)^2} \right)$	
	$dt \qquad (3e^{kt}+7)^2$	$\left((3e^{kt}+7)^2 \right)$	
	Differentiates using the	quotient rule to achieve	
	$\frac{1}{dt} = \frac{1}{(3)}$	$\frac{e^{kt} - 9000e^{kt} \times Qe^{kt}}{(e^{kt} + 7)^2}$	
		or	
	$\frac{\mathrm{d}P}{\mathrm{d}t} = 9000k\mathrm{e}^{kt}\left(3\mathrm{e}^{kt}+7\right)^{-1}$	$-9000e^{kt} (3e^{kt} + 7)^{-2} \times 3ke^{kt}$	
	Differentiates using the	product rule to achieve	N/I
	$\frac{\mathrm{d}P}{\mathrm{d}t} = P \mathrm{e}^{kt} \left(3 \mathrm{e}^{kt} + 7 \right)^{-1} - 9$	$9000e^{kt} \left(3e^{kt}+7\right)^{-2} \times Qe^{kt}$	M1
	or		
	$\frac{\mathrm{d}P}{\mathrm{d}t} = 63000k\mathrm{e}$	$^{-kt}\left(3+7\mathrm{e}^{-kt}\right)^{-2}$	
	Differentiates using the chain rule of	on $P = 9000 (3 + 7e^{-kt})^{-1}$ to achieve	
	$\frac{\mathrm{d}P}{\mathrm{d}t} = \pm D\mathrm{e}^{-kt}$	$t\left(3+7e^{-kt}\right)^{-2}$	
	Watch for $e^{kt} \rightarrow$	kte^{kt} which is M0	
		Substitutes $t = 10$ and their k to obtain	
	dP	a value for $\frac{dP}{dt}$. If the value for $\frac{dP}{dt}$ is	dM1
	Sub $t = 10$ and $k = 0.614 \Rightarrow \frac{dP}{dt} = \dots$	dt dt	(A1 on
	u <i>t</i>	incorrect then the substitution of	Epen)
		t = 10 must be seen explicitly.	
	$\frac{\mathrm{d}P}{\mathrm{d}t} = 9$	Awrt 9 (NB $\frac{dP}{dt} = 9.1694$)	A1
			(.
			(11 mark

Question Number		Scheme	Marks
10(a)		M1: Curve not a straight line through (0, 0) in quadrants 1 and 3 only.	
		A1: Grad $\rightarrow 0$ as $x \rightarrow \pm \infty$	M1A1
			(2)
(b)	$3 \arctan(x+1) - \pi = 0$ $\Rightarrow \arctan(x+1) = \frac{\pi}{3}$	Substitutes $g(x+1) = \arctan(x+1)$ in $3g(x+1) - \pi = 0$ and makes $\arctan(x+1)$ the subject. Do not condone missing brackets unless	M1
		later work implies their presence.	
	a $\left(\frac{\pi}{2}\right)$	IM1: Takes tan and makes <i>x</i> the subject e.g. allow $x = \sqrt{3} \pm 1$. Note that $\tan\left(\frac{\pi}{3}\right)$ does not need to be evaluated for this mark. May be	dM1A1
	i	mplied by e.g. $x = 0.732$ A1: $\sqrt{3}-1$	-
	·		(3)
(c)		$\left(\arctan x - 4 + \frac{1}{2}x\right) \Rightarrow -0.126, +0.405$	M1
		east one answer correct to 1sf	
	Allow equivalent statements e this mark may be withheld if	he sig fig), change of sign + conclusion e.g. positive, negative therefore root etc. but there are any contradictory statements e.g. t lies between $g(5)$ and $g(6)$	A1
	(–)	l to give 0.126, –0.405, allow both marks onclusion is given.	
	II a C		(2)
(d)		Score for $x_1 = 8 - 2 \arctan 5 = \dots$	
	$x_1 = 8 - 2 \arctan 5$	This may be implied by awrt 5.3 (radians) or awrt -149 (degrees) for x_1	M1
		$x_1 = $ awrt 5.253, $x_2 = $ awrt 5.235	
	$x_1 = 5.253, x_2 = 5.235$	Ignore any subsequent iterations and ignore labelling if answers are clearly the second and third terms.	A1
			(2)
			(9 marks)

Question Number	Scheme	Marks
11 (a)	$\begin{pmatrix} 7\\4\\9 \end{pmatrix} + \lambda \begin{pmatrix} 1\\1\\4 \end{pmatrix} = \begin{pmatrix} -6\\-7\\3 \end{pmatrix} + \mu \begin{pmatrix} 5\\4\\b \end{pmatrix} \Rightarrow \begin{array}{c} 7+1\lambda = -6+5\mu\\4+1\lambda = -7+4\mu \text{ any two of}\\9+4\lambda = 3+b\mu \end{array}$ Writes down any two equations for the coordinates of the point of intersection. There must be an attempt to set the coordinates equal but condone slips.	M1
	Full method to find both λ and μ from equations 1 and 2 and uses these values and equation 3 to find a value for b	d M1
	$(1) - (2) \Longrightarrow 3 = 1 + \mu \Longrightarrow \mu = 2$	
	Sub $\mu = 2$ into (1) \Rightarrow 7+1 $\lambda = -6+10 \Rightarrow \lambda = -3$	
	Put values in 3^{rd} equation $9-12=3+2b \Longrightarrow b=-3^*$	
	Completely correct work including $\lambda = -3$, $\mu = 2$ and substitution into both	A1
	sides of the third equation to give $b = -3$	
	Position vector of intersection is $\begin{pmatrix} 7\\4\\9 \end{pmatrix} + -3 \begin{pmatrix} 1\\1\\4 \end{pmatrix}$ or $\begin{pmatrix} -6\\-7\\3 \end{pmatrix} + 2 \begin{pmatrix} 5\\4\\-3 \end{pmatrix}$	D.41
	Substitutes their value of λ into l_1 to find the coordinates or position vector of the point of intersection. Alternatively substitutes their value of μ into l_2 to find the coordinates or position vector of the point of intersection.	d M1
	May be implied by at least 2 correct coordinates for X	
	X = (4, 1, -3) Correct coordinates or vector. Correct coordinates implies M1A1 Marks for finding the coordinates of X can score anywhere in the	A1
	question.	(5)
	(b) Way 1	(3)
	$\pm \overrightarrow{XA} = \pm \begin{pmatrix} 2 \\ 2 \\ 8 \end{pmatrix}, \pm \overrightarrow{XB} = \pm \begin{pmatrix} 10 \\ 8 \\ -6 \end{pmatrix}$ Attempts the difference between the coordinates X and A, X and B. This could be implied by the calculation of the lengths AX and BX. Allow slips but must be subtracting.	M1
	$\pm \overrightarrow{XA} \pm \overrightarrow{XB} = XA XB \cos\theta \Rightarrow 20 + 16 - 48 = \sqrt{72} \sqrt{200} \cos\theta$	
	M1: Attempt the scalar product of \overline{XA} and \overline{XB} or \overline{AX} and \overline{BX} or \overline{XA} and \overline{BX} or \overline{XA} and \overline{BX} or \overline{AX} and \overline{BX}	
(b)	Allow $\cos \theta = \frac{\begin{pmatrix} 2 \\ 2 \\ 8 \end{pmatrix} \cdot \begin{pmatrix} 10 \\ 8 \\ -6 \end{pmatrix}}{\sqrt{72} \sqrt{200}}$ for M1 but not A1 unless the numerator is evaluated	dM1A1
	A1: A correct un-simplified expression $20+16-48 = \sqrt{72}\sqrt{200}\cos\theta$ oe	
	$\cos \theta = \frac{-12}{\sqrt{72} \times \sqrt{200}} \Rightarrow \theta = \arccos\left(-\frac{1}{10}\right)^* $ This is a given answer. There must be an intermediate line with $\cos \theta =$ or $\theta =$	A1*
		(4)

	(b) Wa	ny 2	
	$\mathbf{d}_1 = \begin{pmatrix} 1\\1\\4 \end{pmatrix}, \mathbf{d}_2 = \begin{pmatrix} 5\\4\\-3 \end{pmatrix}$	Uses $b = -3$ and the direction vectors or multiples of the direction vectors	M1
	$\mathbf{d}_1 \cdot \mathbf{d}_2 = \mathbf{d}_1 \mathbf{d}_2 \cos \theta \Longrightarrow 5 +$	$4 - 12 = \sqrt{18}\sqrt{50}\cos\theta$	
	M1: Attempt the scalar produ	ct of the direction vectors	
(b)	Allow $\cos \theta = \frac{\begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix} \bullet \begin{pmatrix} 5 \\ 4 \\ -3 \end{pmatrix}}{\sqrt{18}\sqrt{50}}$ for M1 but not	A1 unless the numerator is evaluated	dM1A1
	A1: A correct un-simplified expression	on $5 + 4 - 12 = \sqrt{18}\sqrt{50}\cos\theta$ oe	
	$\cos \theta = \frac{-3}{\sqrt{18} \times \sqrt{50}} \Rightarrow \theta = \arccos\left(-\frac{1}{10}\right)^*$	This is a given answer. There must be an intermediate line with $\cos \theta =$ $\operatorname{or} \theta =$	A1*

	(b) V	Vay 3	
	$\pm \overrightarrow{XA} = \pm \begin{pmatrix} 2\\2\\8 \end{pmatrix}, \pm \overrightarrow{XB} = \pm \begin{pmatrix} 10\\8\\-6 \end{pmatrix}$	Attempts the difference between the coordinates <i>X</i> and <i>A</i> , <i>X</i> and <i>B</i> . This could be implied by the calculation of the lengths <i>AX</i> and <i>BX</i> . Allow slips but must be subtracting.	M1
(b)		$8^{2} + 6^{2} + 14^{2} = 72 + 200 - 2\sqrt{72}\sqrt{200}\cos\theta$ ct attempt at the cosine rule + 6^{2} + 14^{2} = 72 + 200 - 2\sqrt{72}\sqrt{200}\cos\theta o	dM1A1
	$\cos\theta = \frac{-24}{2\sqrt{72} \times \sqrt{200}} \Rightarrow \theta = \arccos\left(-\frac{1}{10}\right)$	This is a given answer. There must be	A1*
(c)	$\cos\theta = -\frac{1}{10} \Longrightarrow \sin\theta = \frac{\sqrt{99}}{10}$	oe e.g. $\sqrt{\frac{99}{100}}, \frac{3\sqrt{11}}{10}$. May be implied by a correct exact area.	B1
	Area of triangle = $\frac{1}{2}XA \times XB \times \sin^2 \theta$		
	Uses Area of triangle	$=\frac{1}{2}XA \times XB \times \sin \theta$	
	This mark can be scored for e.g. $\frac{1}{2}$ (their	XA)×(their XB)×sin(cos ⁻¹ ($-\frac{1}{10}$))or	M1
	$\frac{1}{2}$ (their XA)×(their X	$B) \times \sin(95.7391)$	
	Must be using the angle	given by $\cos^{-1}\left(-\frac{1}{10}\right)$	
		Accept for example $A = 9\sqrt{44}, \sqrt{3564}$	A1
	Note that $A = \frac{1}{2} \times 6\sqrt{2} \times 10\sqrt{2} \times \sin(95.7391) = 18\sqrt{11}$ scores all 3 marks		
			(3)
			(12 marks)

Question Number	S	cheme	Marks
12.(a)	$V = \int y^2 dx = \int y^2 \frac{dx}{dt} dt = \int (2\sin 2t)^2 3\cos t dt$		
	M1: Attempts $\int y^2 dx = \int y^2 \frac{dx}{dt} dt$ where $\frac{dx}{dt} = \pm k \cos t$		M1A1
	May be implied by	y e.g. $\int (2\sin 2t)^2 3\cos t$	
	A1: = $\int (2\sin 2t)^2 3\cos t (dt) (dt ca)$	n be missing as long as the M is scored)	
	$= \int (4\sin t\cos t)^2 3\cos t \mathrm{dt}$	Uses $\sin 2t = 2\sin t\cos t$	M1
	$x = \frac{3}{2} \Longrightarrow t = \frac{\pi}{6} \text{ or } k = 48$	Correct value for <i>a</i> (must be exact) or a correct value for <i>k</i>	B1
	$V = \int \pi y^2 dx = 48\pi \int_{0}^{\frac{\pi}{6}} \sin^2 t \cos^3 t dt ^*$	Achieves printed answer including "dt" (even if lost earlier) with correct limits and 48π in place with no errors. Or achieves the printed answer with the letters <i>a</i> and <i>k</i> and states the correct values of <i>a</i> and <i>k</i> .	A1*
			(5)

	Volume = $48\pi \left[\frac{u^3}{3} - \frac{u^5}{5} \right]_0^{\frac{1}{2}} = \frac{17\pi}{10}$	limits 0 and $\frac{\pi}{6}$ if they return to sin <i>t</i> . However, in both cases the	d M1A1
		d M1: All methods must have been scored. It is for using the limits 0 and $\frac{1}{2}$ and subtracting or for using the	
	$=k\left[\frac{u^3}{3}-\frac{u^5}{5}\right]$	Multiplies out to form a polynomial in <i>u</i> and integrates with $u^n \rightarrow u^{n+1}$ for at least one of their powers of <i>u</i> .	M1
	and allow	w the letter k .	
	ignore inclusion or omission of π so lo	book for e.g. $k \int u^2 (1-u^2) du$ or equivalent	
	produce an integ	<i>t</i> using $u = \sin t$ and $\cos^2 t = \pm 1 \pm \sin^2 t$ to gral just in terms of <i>u</i> . of <i>u</i> - follow through on incorrect <i>k</i> 's and	M1A1ft
	$V = k \int \sin^2 t \cos^3 t \mathrm{d}t = k \int u^2 \cos^2 t \mathrm{d}u$	$= k \int u^2 (1 - \sin^2 t) \mathrm{d}u = k \int u^2 (1 - u^2) \mathrm{d}u$	
(b)	$u = \sin t \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}t} = \cos t$	States $\frac{du}{dt} = \cos t$ or equivalent. May be implied.	B1

Question Number	Scheme	Marks
13(a)	$V = \frac{1}{3}\pi h^{2} (30 - h) = 10\pi h^{2} - \frac{1}{3}\pi h^{3} \Rightarrow \frac{dV}{dh} = 20\pi h - \pi h^{2}$ or $V = \frac{1}{3}\pi h^{2} (30 - h) \Rightarrow \frac{dV}{dh} = \frac{2}{3}\pi h (30 - h) - \frac{1}{3}\pi h^{2}$	M1A1
	M1: Attempts $\frac{dV}{dh}$ either by multiplying out and differentiating each term to give a derivative of the form $\alpha h - \beta h^2$ or by the product rule to give a	
	derivative of the form $\alpha h (30 - h) \pm \beta h^2$. A1: Any correct (possibly un-simplified) form for $\frac{dV}{dh}$	
	Uses $\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}h} \times \frac{\mathrm{d}h}{\mathrm{d}t} \Rightarrow -\frac{1}{10}V = (20\pi h - \pi h^2) \times \frac{\mathrm{d}h}{\mathrm{d}t}$	M1
	Uses a correct form of the chain rule, e.g. $\frac{dV}{dt} = \frac{dV}{dh} \times \frac{dh}{dt}$ or uses $\frac{dh}{dV} \times \frac{dV}{dt}$ with their $\frac{dV}{dh}$ and $\frac{dV}{dt} = -\frac{1}{10}V$.	
	$\Rightarrow -\frac{1}{10} \times \frac{1}{3} \pi h^2 (30 - h) = \pi h (20 - h) \times \frac{dh}{dt} \left(\Rightarrow \frac{dh}{dt} = \dots \right)$	
	Substitutes $V = \frac{1}{3}\pi h^2 (30 - h)$ and rearranges to obtain $\frac{dh}{dt}$ in terms of h	
	$\frac{dh}{dt} = -\frac{h(30-h)}{30(20-h)} *$ This is a given answer. There must have been intermediate lines and correct factorisation and no errors and " $\frac{dh}{dt}$ = "must be seen at some point.	A1*
		(5)
(b)	$\frac{30(20-h)}{h(30-h)} \equiv \frac{A}{h} + \frac{B}{30-h}$ Correct form for the partial fractions	B1
	$30(20 - h) \equiv A(30 - h) + Bh$ $h = 30 \Rightarrow 30B = -300 \Rightarrow B = -10 \text{ and } h = 0 \Rightarrow 30A = 600 \Rightarrow A = 20$ Attempts to get both constants by a correct method e.g. substituting, comparing coefficients, cover up rule	M1
	$\frac{30(20-h)}{h(30-h)} = \frac{20}{h} - \frac{10}{30-h}$ Correct partial fractions (or states "A" = 20, "B" = -10)	A1 (3)

(c)	Wa			
	$\frac{dh}{dt} = -\frac{h(30-h)}{30(20-h)} \Rightarrow \int \frac{30(20-h)}{h(30-h)} dh = -1 \int dt$ A correct statement which may be implied by subsequent work. Condone the omission of "dh" and "dt" provided the intention is clear but the minus sign must be present on one side or the other.			B1
	$20 \ln h + 10 \ln(30 - h)$	M1: I to obt A1: C partia $\frac{A}{h} + \frac{1}{2}$	Integrates their partial fractions tain $\pm P \ln h \pm Q \ln(30 - h)$ Correct integration for their al fractions of the form $\frac{B}{30 - h}$ following through their nd "B".	M1A1ft
	$t = 0, h = 10 \Longrightarrow c = 20 \ln 10 + 10 \ln 20$	value	itutes $h = 10$ and $t = 0$ to find a for <i>c</i> . NB $c = 76.0$	M1
	$h = 5 \Rightarrow t = 20 \ln 10 + 10 \ln 20 - 10 \ln 25 - 20 \ln 5$ Substitutes $h = 5$ and uses their value of c to find a value for t.			ddM1
	t = 11.63 (secs)	Awrt	11.63 only	A1cso
	(c) Way 2			(6)
				(14 marks)
	(c) Way 2 $\frac{dh}{dt} = -\frac{h(30-h)}{30(20-h)} \Rightarrow \int \frac{30(20-h)}{h(30-h)} dh = -1 \int dt$			
	$\frac{dt}{dt} = -\frac{h(t)(t-h)}{30(20-h)} \Rightarrow \int \frac{dt}{h(30-h)} dh = -1 \int dt$ A correct statement which may be implied by subsequent work. Condone the omission of "dh" and "dt" provided the intention is clear but the minus sign must be present on one side or the other.			B1
	$20 \ln h + 10 \ln(30 - h)$	M1: Integrates their partial fractions to obtain $\pm P \ln h \pm Q \ln(30 - h)$ A1: Correct integration for their partial fractions of the form $\frac{A}{h} + \frac{B}{30 - h}$ following through their "A" and "B".		M1A1ft
	$(t=)[20\ln h + 10\ln(30-h)]_{5}^{10}$ or $(t=)[20\ln h + 10\ln(30-h)]_{10}^{5}$	Attempts the limits 5 and 10 for <i>h</i> . Either statement as shown is sufficient.		M1
	$(t =)[20\ln 10 + 10\ln 20] - [20\ln 5 + 10\ln 25]$		Substitutes $h = 5$ and $h = 10$ to find a value for <i>t</i> .	ddM1
	<i>t</i> = 11.63	<i>t</i> = 11.63		A1cso
				(6)

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London WC2R \mbox{ORL}