Mark Scheme (Results)

June 2017

IAL Chemistry (WCH06/01)
Chemistry Laboratory Skills II

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2017
Publications Code WCH06_01_MS_1706
All the material in this publication is copyright
(C) Pearson Education Ltd 2017

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.
Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Questio \mathbf{n} Number	Acceptable Answer	Reject	Mark
$\mathbf{1 (a) (\mathbf { i) }}$	(Green solid) turns black OR Black solid formed ALLOW crystals / precipitate / powder for solid (1)	(2)	
	Colourless liquid (condenses at the mouth of the boiling tube) ALLOW steamy fumes / steam / white fumes / condensation	White gas	(1)
IGNORE Gas / vapour evolved Effervescence /bubbling / fizzing Water / water vapour formed			

Question Number	Acceptable Answer	Reject	Mark
1(a)(ii)	EITHER Add (water) to cobalt((II)) chloride $/ \mathrm{CoCl}_{2}$ (paper) (cobalt chloride) turns (from blue to) pink OR Add (water) to anhydrous copper((II)) sulfate / CuSO_{4} (copper(II) sulfate) turns (from white to) blue OR Add (water) to copper((II)) sulfate / CuSO_{4} (copper(II) sulfate) turns from white to blue If name and formula of reagents are given, both must be correct Ignore formula of product Observation mark dependent on test reagent being correct (or a near miss)	Boiling temperature is $100^{\circ} \mathrm{C}$ Test with litmus Test with universal indicator	(2)

Question Number	Acceptable Answer	Reject	Mark
1(a)(iii)	(Bubble the gas through) lime water / calcium hydroxide solution / (1) $\mathrm{Ca(OH})_{2}(\mathrm{aq})$		(2)
which turns milky / cloudy / chalky / (1) forms white precipitate If name and formula are given, both must be correct	Smokey/turbid		
Observation mark dependent on test reagent being correct (or a near miss)	IGNORE Extinguishes a lighted splint Blue litmus turns red		

Question Number	Acceptable Answer	Reject	Mark
$\mathbf{1 (b) (i)}$	Effervescence / bubbling / fizzing (1) IGNORE Gas / CO_{2} / carbon dioxide evolved /steamy fumes (Green solid dissolves and) a blue solution formed	Just 'turns blue' blue precipitate	(2)

Question Number	Acceptable Answer	Reject	Mark
$\mathbf{1 (b) (i i)}$	$\mathrm{Cu}_{2} \mathrm{CO}_{3}(\mathrm{OH})_{2}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{CuSO}_{4}+3 \mathrm{H}_{2} \mathrm{O}$ $+\mathrm{CO}_{2}$ OR multiples Ignore state symbols even if incorrect.		(1)

Question Number	Acceptable Answer	Reject	Mark
$\mathbf{1 (b) (i i i)}$	(aqueous) Ammonia / NH 3(aq))		
	ALLOW $\mathrm{NH}_{4} \mathrm{OH} /$ amine by name or formula IGNORE Dilute / concentrated	(1)	

Question Number	Acceptable Answer	Reject	Mark
$\mathbf{1 (c) (i)}$	(Anhydrous) calcium chloride $/ \mathrm{CaCl}_{2}$ l magnesium sulfate $/ \mathrm{MgSO}_{4} /$ silica $\mathrm{gel} /$ sodium sulfate $/ \mathrm{Na}_{2} \mathrm{SO}_{4} /$	$\mathrm{NaOH} / \mathrm{KOH} /$ $\mathrm{CaO} / \mathrm{CuSO}_{4} /$ CoCl calcium sulfate $/ \mathrm{H}_{2} \mathrm{SO}_{4}$ Just CaSO_{4}	(1)
	ALLCa' Phosphorus (V) oxide $/$ phosphorus pentoxide $/ \mathrm{P}_{4} \mathrm{O}_{10} / \mathrm{P}_{2} \mathrm{O}_{5}$		

Question Number	Acceptable Answer	Reject	Mark		
$\mathbf{1 (c) (i i)}$	Soda lime / sodium hydroxide / NaOH / potassium hydroxide / KOH	$\mathrm{CaO} /$ calcium oxide / any solutions	(1)		
ALLOW Calcium hydroxide $/ \mathrm{Ca}(\mathrm{OH})_{2}$	Limewater			\quad	
:---					

Question Number	Acceptable Answer	Reject	Mark
$\mathbf{1 (c) (\text { iii) }}$	Heat malachite solid /sample to constant mass OR Heat malachite, weigh and heat, re-weigh until two successive weighings are the same	Just 'heat to constant mass'	(1)
	ALLOW No change in mass of malachite / test tube OR No change in mass of X / Y / U-tube(s)	IGNORE No further change in colour No more gas / water produced	

Question Number	Acceptable Answer	Reject	Mark
$\mathbf{1 (c) (i v)}$	Mass of malachite / sample at the start OR Mass of residue/black solid/copper((II)) oxide after heating IGNORE Change in mass of malachite Change in mass of solid \mathbf{X} and solid \mathbf{Y} OR Mass of both U tubes at the start and finish of the experiment		(2)
	IGNORE Masses / amounts / moles of malachite Masses / amounts / moles of water and CO2		

(Total for Question 1 = 15 marks)

Questio n	Acceptable Answer				Reject	Mar k
2(a)(i)					solution for ppt	(5)
	Test		bservations			
		pentanal	$\begin{gathered} \text { pentan- } \\ \text { 2-one } \end{gathered}$	$\begin{aligned} & \text { pentan- } \\ & 3 \text {-one } \end{aligned}$		
	$\begin{gathered} 2,4- \\ \text { dinitro- } \\ \text { phenyl- } \\ \text { hydrazin } \\ \text { e } \end{gathered}$	red / orange / yellow ppt	red / orange / yellow ppt	red / orange / yellow ppt		
	Tollens' reagent	silver mirror / black ppt / grey ppt	no change	no change		
	Iodofor m test	no change	(pale) yellow ppt OR antiseptic smell	no change	orange ppt	
	2,4-DNPH all three co ALLOW two correct three preci scores 1 three 'solutior each other Penalise om iodoform te Four corre IGNORE Extra 'no c	ests rect scores scores 1 itates but no ions' scores positive test ission of pp sts once only 'no chang anges'	/ incorrect zero scores 1 t in Tollens' ' scores 1	colour (2) (2) and ark (1)		

Question Number	Acceptable Answer	Reject	Mark
2(a)(ii)	The two methods must be marked separately MP1 and MP2 Method 1 Iodine (solution) / $\mathrm{I}_{2}((\mathrm{aq})) /$ iodine in potassium iodide (solution) Sodium hydroxide (solution) / $\mathrm{NaOH}((\mathrm{aq})$) OR Potassium hydroxide (solution) / KOH((aq)) MP1 and MP2 Method 2 Add potassium iodide / KI((aq)) ALLOW Add sodium iodide / NaI((aq)) Add sodium chlorate((I)) / sodium hypochlorite / $\mathrm{NaOCl}((\mathrm{aq}))$ MP3 MP3 is dependent on two correct reagents from a single method or on 'iodine and alkali' in method 1 Any indication that the inorganic reagents are in (aqueous) solution including "dilute" OR (Method 1 only) Add alkali to iodine until (brown solution) turns colourless OR Warm OR Heat in a water bath ALLOW Just 'heat'	Just ‘alkali' Ethanol as a solvent Reflux	(3)

Question Number	Acceptable Answer			Reject	Mark
2(b)	Structure If all three marks are not awarded All three diagrams correct with correct linked proton environments scores 2 All three diagrams correct showing proton environments only scores 1 All three 'numbers of proton environments' correct scores 1 mark ALLOW any indication of identical environments in propan-3-one				(3)

(Total for Question 2 = 11 marks)

Question Number	Acceptable Answer	Reject	Mark
$\mathbf{3 (a) (i)}$	(High resistance) voltmeter OR Potentiometer ALLOW high resistivity voltmeter	Low resistance voltmeter Galvanometer Voltmeter cell	$\mathbf{(1)}$

Question Number	Acceptable Answer	Reject	Mark
3(a)(ii)	Copper / Cu	$\mathrm{Cu}^{2+} /$ Cu and any other metal	$\mathbf{(1)}$

Question Number	Acceptable Answer	Reject	Mark
3(a)(iii)	Platinum / Pt		(1)

Question Number	Acceptable Answer		Reject	Mark
3(a)(iv)	Filter paper	(1)	Just "paper"	
	IGNORE salt bridge			
	(soaked in saturated solution of) potassium nitrate $/ \mathrm{KNO}_{3}$ $\mathrm{ALLOW}^{\mathrm{NaNO}_{3} / \mathrm{KCl} / \mathrm{NaCl}}$	solids		

Question Number	Acceptable Answer	Reject	Mark
3(a)(v)	Solution containing soluble iron(II) and iron(III) compounds identified by name or formula e.g. iron(II) sulfate / FeSO_{4} and iron(III) chloride / FeCl_{3} ALLOW Solution containing Fe^{2+} and Fe^{3+} Both solutions $1 \mathrm{~mol} \mathrm{dm}^{-3}$ in iron ions ALLOW Solutions equimolar in iron ions Name or formula of soluble iron compounds with 1 mole of $\mathrm{Fe}^{\mathrm{x+}}$ per mole of both compounds e.g. 0.5 mol $\mathrm{dm}^{-3} \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ and $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ FeSO_{4} scores (2) marks If no other mark scored $1.0 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{Fe}^{2+} / \mathrm{Fe}^{3+}$ OR $0.5 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ OR 1.0 mol $\mathrm{dm}^{-3} \mathrm{FeSO}_{4}$ scores (1) marks		(2)

Question Number	Acceptable Answer	Reject	Mark
$\mathbf{3 (b) (i)}$	$2 \mathrm{Fe}^{3+}+\mathrm{Cu} \rightarrow 2 \mathrm{Fe}^{2+}+\mathrm{Cu}^{2+}$ OR Multiples OR \rightleftharpoons for \rightarrow IGNORE State symbols even if incorrect.	Reverse reaction	$\mathbf{(1)}$

Question Number	Acceptable Answer	Reject	Mark
3(b)(ii)	(literature value) $E^{\ominus}{ }_{\text {cell }}=0.77-0.34=(+) 0.43$ (V) TE on reverse reaction in (b)(i) ($E^{\ominus}{ }_{\text {cell }}=-0.43$ (V)) $\% \text { error }=100 \times(0.43-0.35) \div 0.43=18.6$ \% TE on incorrect calculation of E^{\ominus} cell but literature value must be the denominator	$\begin{align*} & 22.9 \text { \% } \tag{1}\\ & 20 \% \end{align*}$	(2)

Question Number	Acceptable Answer	Reject	Mark
3(c)(i)	MP1 Use a pipette to measure 25.0 (or 10.0) cm^{3} of the $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ copper(II) sulfate solution ALLOW Burette MP2 Transfer this to a 250.0 (or 100.0) cm^{3} volumetric / graduated / standard flask (1) MP3 Make solution up to the mark with (distilled) water and then mix / shake / invert If MP1 and MP2 not awarded, mention of pipette and volumetric flask scores 1	Measuring cylinder / beaker / syringe No mention of appropriate volume	(3)

Question Number	Acceptable Answer	Reject	Mark
3(c)(ii)	Increases the possibility of contamination of $\mathrm{Cu}^{2+} / \mathrm{CuSO}_{4}$ due to residues from earlier experiments in beakers or on salt bridge / electrodes	(1)	
	ALLOW Reverse explanation i.e. low concentration to high reduces contamination risk		

Question Number	Acceptable Answer	Reject	Mark
3(c)(iii)	See below for example Choice of scale to cover at least half the grid in both directions and labelled axes with units on y axis, which may be labelled E/V. x axis may be $\log _{10}\left[\mathrm{Cu}^{2+}(\mathrm{aq})\right]$ or $\log _{10}\left[\mathrm{Cu}^{2+}\right]$ or $\log _{10}\left[\mathrm{CuSO}_{4}(\mathrm{aq})\right]$ or $\log _{10}\left[\mathrm{CuSO}_{4}\right]$ All points given in table correctly plotted TE on axes used Any sensible smooth best fit straight line	Nonlinear scale scores (0) Any units on x-axis log scale reversed point to point line	(3)

\qquad

Question Number	Acceptable Answer	Reject	Mark
3(c)(iv)	Electrode potential / E is proportional to $\log _{10}$ (concentration of copper((II)) ions) $/ \log _{10}\left[\mathrm{Cu}^{2+}((\mathrm{aq}))\right]$ OR E a $\log _{10}\left[\mathrm{Cu}^{2+}((\mathrm{aq}))\right] /$ $\log _{10}\left[\mathrm{CuSO}_{4}((\mathrm{aq}))\right]$ ALLOW \log / \lg for $\log _{10}$ IGNORE 'directly'/ reference to exponential relationships No TE on incorrectly plotted graph	$\mathrm{E} \mathrm{a}\left[\mathrm{Cu}^{2+}(\mathrm{aq})\right]$	(1)

(Total for Question 3 = 18 mark)

Question Number	Acceptable Answer	Reject	Mark		
4(a)	Oxidising	Flammable / inflammable	(1)		
"oxidising agent/liquid"					
"oxidatitve" / "oxidating"					
/"oxidant"				\quad	(1)
:---					

Question Number	Acceptable Answer	Reject	Mark
4(b)	Reaction (between concentrated nitric and sulfuric acid) is (very) exothermic	Reaction between sulfuric acid and water	(1)
ALLOW Generates a lot of heat IGNORE Vigorous / violent / prevents splashing / volatile To slow down the reaction / prevent high rise in temperature	the reaction		

Question Number	Acceptable Answer	Reject	Mark
4(c)	To minimise / prevent formation of 1-methyl-2,4- dinitrobenzene OR dinitration / trinitration / further substitution OR To ensure (only) monosubstitution IGNORE Further reactions occur	(1)	

Question Number	Acceptable Answer	Reject	Mark
4(d)	To neutralise / react with / remove (remaining traces of / excess) acid / nitric acid / sulphuric acid		(1)
IGNORE Impurities			

Question Number	Acceptable Answer	Reject	Mark
$\mathbf{4 (e)}$	Lower value (from) $218-221\left({ }^{\circ} \mathrm{C}\right)$ Upper value (to) $223-226\left({ }^{\circ} \mathrm{C}\right)$	$222^{\circ} \mathrm{C}$ on its own or as one of the range values	$\mathbf{(1)}$

Question Number	Acceptable Answer	Reject	Mark
4(f)	Either (Remove 1-methyl-4-nitrobenzene by) further distillation at (about) $240^{\circ} \mathrm{C}$	Distillation at or above 300 ${ }^{\circ} \mathrm{C}$	(1)
	ALLOW between $238^{\circ} \mathrm{C}$ and $290^{\circ} \mathrm{C}$ OR less than $300^{\circ} \mathrm{C}$ (and then recrystallisation / crystallisation from the distillation residue)	Or Further distillation / fractional distillation and followed by recrystallisation / crystallisation from the distillation residue	ALLOW Steam distillation and because 1- methyl-2,4-dinitrobenzene decomposes around its boiling temperature

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467

Fax 01623450481

Email publication.orders@edexcel.com
Order Code

For more information on Edexcel qualifications, please visit our website www.edexcel.com

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

