

Mark Scheme (Results)

January 2017

Pearson Edexcel
International Advanced Subsidiary Level
in Chemistry (WCH05)
Paper 01 General Principles of Chemistry II –
Transition Metals
and Organic Nitrogen Chemistry
(including synoptic assessment)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2017
Publications Code WCH05_01_MS_2017*
All the material in this publication is copyright
© Pearson Education Ltd 2017

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
 - i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
 - ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
 - iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

/ means that the responses are alternatives and either answer should receive full credit.

() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

Phrases/words in **bold** indicate that the <u>meaning</u> of the phrase or the actual word is **essential** to the answer.

ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Ouality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities.

Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A (multiple choice)

Question Number	Correct Answer	Mark
1	D	1
	Incorrect answers	
	A - gradual increase in ionisation energies	
	B - gradual increase in ionisation energies	
	C - gradual increase in ionisation energies	

Question	Correct Answer	Mark
Number		
2	A	1
	Incorrect answers	
	B - ionic is incorrect	
	C - dative covalent is missing	
	D - covalent is missing	

Question Number	Correct Answer	Mark
3	D	1
	Incorrect answers A - precipitate is soluble in excess sodium hydroxide B - gives a blue precipitate C - precipitate does not dissolve in excess aqueous ammonia	

Question Number	Correct Answer	Mark
4	D	1
	Incorrect answers	
	A - incorrect type of reaction	
	B - incorrect type of reaction	
	C - incorrect type of reaction	

Question Number	Correct Answer	Mark
5	В	1
	Incorrect answers	
	A - basic is missing	
	C - acidic is missing	
	D - these are not redox reactions	

Question Number	Correct Answer	Mark
6	В	1
	Incorrect answers A - incorrect number of hydrogen atoms C - incorrect number of hydrogen atoms D - incorrect number of hydrogen atoms	

Question	Correct Answer	Mark
Number		
7	A	1
	Incorrect answers	
	B - substitution is incorrect	
	C - electrophilic is incorrect	
	D - electrophilic and substitution are both incorrect	

Question Number	Correct Answer	Mark
8	В	1
	Incorrect answers	
	A - does not use the concentration	
	C - solution is not alkaline	
	D - solution is not alkaline	

Question Number	Correct Answer	Mark
9	В	1
	Incorrect answers A - does not use the concentration C - does not use the concentration and no square root D - no square root	

Question	Correct Answer	Mark
Number		
10	С	1
	Incorrect answers	
	A - no benzene ring	
	B - no benzene ring and no amine	
	D - no amine	

Question Number	Correct Answer	Mark
11	D	1
	Incorrect answers	
	A - can form an amine	
	B - can form an amine	
	C - can form an amine	

Question	Correct Answer	Mark
Number		
12	В	1
	Incorrect answers	
	A - incorrect volume of oxygen	
	C - incorrect volume of oxygen	
	D - incorrect volume of oxygen	

Question	Correct Answer	Mark
Number		
13	С	1
	Incorrect answers	
	A - not used mole ratio	
	B - incorrect mole ratio	
	D - incorrect mole ratio	

Question	Correct Answer	Mark
Number		
14	A	1
	Incorrect answers	
	B - incorrect statement	
	C - incorrect statement	
	D - incorrect statement	

Question Number	Correct Answer	Mark
15	С	1
	Incorrect answers	
	A - refluxing is incorrect	
	B - washing is incorrect	
	D - steam distillation is missing	

Question	Correct Answer	Mark
Number		
16	A	1
	Incorrect answers	
	B - incorrect electrode	
	C - incorrect process	
	D - incorrect electrode and process	

Question Number	Correct Answer	Mark
17	A	1
	Incorrect answers	
	B - incorrect value	
	C - incorrect sign	
	D - incorrect value and sign	

Question	Correct Answer	Mark
Number		
18	В	1
	Incorrect answers	
	A - Q is not feasible	
	C - Q and R are not feasible	
	D - Q is not feasible	

Question	Correct Answer	Mark
Number		
19	С	1
	Incorrect answers	
	A - burette error not multiplied by 2	
	B - burette error not multiplied by 2 and pipette error should	
	not be multiplied by 2	
	D - pipette error should not be multiplied by 2	

Question	Correct Answer	Mark
Number		
20	D	1
	Incorrect answers	
	A - incorrect value (2 mol HCl and 1 mol H ₂ SO ₄ formed so 4	
	mol NaOH needed)	
	B - incorrect value	
	C - incorrect value	

Section B

Question Number	Acceptable Answers	Reject	Mark
21(a)(i)	First mark $H_2SO_4 + HNO_3 \rightarrow NO_2^+ + H_2O + HSO_4^-$ OR $H_2SO_4 + HNO_3 \rightarrow H_2NO_3^+ + HSO_4^- \text{ and}$ $H_2NO_3^+ \rightarrow NO_2^+ + H_2O$ OR $2H_2SO_4 + HNO_3 \rightarrow NO_2^+ + H_3O^+ + 2HSO_4^-$ IGNORE state symbols, even if incorrect $IGNORE \Rightarrow $	Curly arrow on or outside the hexagon Dotted bonds to H and NO unless	4
	covering at least 3 carbon atoms and facing the tetrahedral carbon and some part of the positive charge must be within the horseshoe ALLOW dashed line for horseshoe (1)	H and NO ₂ unless clearly part of a 3D structure	
	Fourth mark - stand alone Curly arrow from C-H bond to anywhere in the hexagon reforming the delocalised structure (1)		
	Correct Kekulé structures score full marks		
	IGNORE any involvement of HSO4 ⁻ in the final step		

Question Number	Acceptable Answers	Reject	Mark
21(a)(ii)	Tin/Sn and (concentrated) hydrochloric acid /(concentrated) HCl((aq)) ALLOW Iron/Fe and (concentrated) hydrochloric acid /(concentrated) HCl((aq)) ALLOW then sodium hydroxide /NaOH /alkali IGNORE mention of catalyst	Dilute / Sulfuric acid / Zinc LiAlH4	1

Question Number	Acceptable Answers	Reject	Mark
21(a)(iii)	Benzenediazonium chloride / product / nitrous acid / HNO ₂ decomposes ALLOW unstable for decomposes	Nitrobenzene / phenylamine decomposes	1
	OR Phenol would form ALLOW benzenediazonium chloride undergoes hydrolysis IGNORE just forms another product / further substitution / compound is volatile		

Question Number	Acceptable Answers	Reject	Mark
21(a)(iv)		Bond between N and Cl	1
	OR		
	N N N + CI-		
	Must show + charge, this can be on either nitrogen, between the nitrogens or outside of brackets around the cation and bonds around N and separate Cl ⁻ ion		
	IGNORE bond angles		
	Correct Kekulé structure scores the mark		

Question Number	Acceptable Answers	Reject	Mark
21(a)(v)	ALLOW NaO-, provided there is no bond between Na and O IGNORE connectivity of OH if the bond is vertical Correct Kekulé structure scores the mark	OH-C ONa-C	1

Question Number	Acceptable Answers	Reject	Mark
21(b)	Stand alone marks If name and formula are given, both must be correct CH ₃ Cl / chloromethane OR CH ₃ Br / bromomethane OR CH ₃ I / iodomethane (1) (Dry) aluminium chloride / AlCl ₃ / iron(III) chloride / FeCl ₃ OR (Dry) aluminium bromide / AlBr ₃ / iron(III) bromide / FeBr ₃ OR (Dry) aluminium iodide / AlI ₃ / iron(III) iodide / FeI ₃ (1) IGNORE heat / reflux /other conditions	Addition of acid / alkali / water	2

Question	A		Doiset	Maril
Number	Acceptable Answers		Reject	Mark
*21(c)	IGNORE unbalanced equations / additional incorrect species equations throughout the answer	in		5
	Oxidation Potassium dichromate((VI)) / K ₂ Cr ₂ O ₇ / Cr ₂ O ₇ ²⁻			
	and (dilute) sulfuric acid / H ⁺ / acidified(aq) (heat /reflux)		HCl(aq)	
	ALLOW other oxidizing agents eg KMnO ₄ /H ⁺ (aq) / Fehling's / Benedict's / Tollens'			
	IGNORE concentration of acid	(1)		
	Intermediate - stand alone			
	ALLOW -CO₂H and displayed/ skeletal formula	(1)		
	Reduction - of benzaldehyde or benzoic acid Lithium tetrahydridoaluminate((III)) / lithium aluminium hyd /LiAlH $_4$ and (dry) ether / ethoxyethane / $(C_2H_5)_2O$	Iride		
	ALLOW sodium tetrahydridoborate(III) / sodium borohydride NaBH ₄ and	/		
	water / aq (1)			
	Intermediate - stand alone			
	ALLOW displayed/ skeletal formula IGNORE name, even if incorrect	(1)		
	Esterification EITHER	(1)		
	React benzoic acid and phenylmethanol and			
	(concentrated) strong acid / hydrochloric acid / HCl / sulfur / H_2SO_4 (and heat / reflux) OR	ic acid	PCl₅(aq)	
	react benzoic acid with PCl ₅ / phosphorus(V) chloride and			
	react benzoyl chloride and phenylmethanol together (at room temperature) IGNORE heat	m (1)		
	(Total for Questi	0.1	15 1)	

(Total for Question 21 = 15 marks)

Question Number	Acceptable Answers	Reject	Mark
22(a)(i)	Sc [Ar] \uparrow	Vertical lines with no arrow heads once only	2

Question Number	Acceptable Answers	Reject	Mark
22(a)(ii)	d-block element: (When the electronic structure is built up according to the <i>aufbau</i> rules) the <i>last</i> electron goes into the d-subshell / (one) of the d orbitals / a d orbital	Just 'electrons present in d-subshell	2
	(1)	Outer(most) / valence electrons are in d-subshell	
	transition element: Forms / has at least one ion with a partially filled / incomplete d-subshell / incomplete d orbital(s)	Penalise shell for subshell once only	
	ALLOW Forms / has at least one ion with an unpaired d-electron / incomplete d orbital(s)		
	ALLOW reference to one ion or more than one ion (1)		
	IGNORE additional properties such as variable oxidation state / forms coloured ions / forms complex ions		

Question Number	Acceptable Answers	Reject	Mark	
22(a)(iii)	EITHER		2	
	The paired electron / an electron in the full orbital in (3d in) Fe ²⁺ is easily removed due to repulsion ALLOW The paired electron in Fe ²⁺ requires less energy (to remove) due to repulsion (1)	If 'd orbitals' has not been mentioned somewhere in the answer penalise 'half-	If 'd orbitals' has not	
	But the $(3)d^5$ arrangement / half-filled $(3)d$ -subshell / half-filled $(3)d$ orbitals in Mn^{2+} is stable (so an electron is not easily lost) (1)			
	OR	filled d orbital' in EITHER or OR answers		
	Fe ³⁺ and Mn ²⁺ both have $(3)d^5$ arrangement / half-filled $(3)d$ sub-shell / half-filled $(3)d$ orbitals (1)			
	Stand alone mark The half-filled (3)d-subshell / (3)d orbitals is / are (more) stable (than 3d ⁶ in Fe ²⁺ and 3d ⁴ in Mn ³⁺) (1)			

Question Number	Acceptable Answers	Reject	Mark
22(a)(iv)	The energy difference between the (sets / splitting of) (3)d orbitals is different (when water ligands	(3)d orbital, if not penalised in (a)(iii)	2
	are present)	. , , ,	
	ALLOW	Energy released	
	The splitting of the (3)d orbitals / sub-shell is different (1)		
	()		
	IGNORE just 'they have different energy levels'		
	So they absorb different frequencies / wavelengths (of visible light) (1)		
	IGNORE they have different numbers of d electrons (for d-d transitions)		
	IGNORE just 'they absorb different colours / energy'		

Question Number	Acceptable Answers	Reject	Mark
22(b)	First mark - comment about As 5 mol As ₂ O ₃ (oxidised) so the change / increase in oxidation number is 20 / total $20e^-$ lost / $5As_2O_3 + 10H_2O \rightarrow 5As_2O_5 + 20H^+ + 20e^-$ / 1 mol As ₂ O ₃ loses $4e^-$ / $As_2O_3 + 2H_2O \rightarrow As_2O_5 + 4H^+ + 4e^-$ (1) Second mark - comment about Mn 4 mol MnO ₄ ⁻ (reduced and) change decrease in oxidation number is 20 / total $20e^-$ gained / change in oxidation number of each Mn is 5 / each Mn(VII) gains $5e^-$ (1) Third mark - final oxidation number (final oxidation number is) +2 / Mn ²⁺ / Mn(II) conditional on some working / equation to show this (1)		3

Question Number	Acceptable Answers	Reject	Mark
22(c)(i)	Ligand has 2 atoms that can form (co-ordinate / dative covalent) bonds (to the metal ion) ALLOW Has 2 lone pairs that form (co-ordinate / dative covalent) bonds ALLOW Has 2 lone pairs that it donates (to the metal ion) ALLOW Forms 2 (co-ordinate / dative covalent) bonds (to the metal ion) IGNORE mention of nucleophile	2 ligands attached to the ion lonic bond Just 'has 2 lone pairs'	1

Question Number	Acceptable Answers	Reject	Mark
22(c)(ii)	ALLOW skeletal / displayed / structural formulae or any combination of these		2
	(1)		
	ALLOW delocalised COO ⁻ groups (1) IGNORE lone pairs		

Question Number	Acceptable Answers	Reject	Mark
22(c)(iii)	(+)2 / II /2+		1

(Total for Question 22 = 15 marks)

Question Number	Acceptable Answers	Reject	Mark
23(a)(i)	Hydrogen cyanide / HCN (and potassium cyanide / KCN)	Just CN ⁻	1
	OR Potassium cyanide / KCN / sodium cyanide / NaCN and pH = 8 / H ₂ SO ₄ / HCl IGNORE concentrations of acids alkali		

Question Number	Acceptable Answers	Reject	Mark
23(a)(ii)	any named strong acid / HCl / H₂SO₄ / H⁺	Just 'acid'	1
	OR		
	any named strong alkali / NaOH / KOH /OH followed by an acid	alkali and acid added at the same time	
	IGNORE water / concentrations of solutions	Jame Cime	

Question Number	Acceptable Answers	Reject	Mark
23(a)(iii)	H H H H H H O O H H H C C H H H C C H H (Cl ⁻)		1
	OR		
	OR formation of tertiary or quaternary amines		
	ALLOW CH ₃ / C ₂ H ₅		
	ALLOW OH		
	ALLOW zwitterions for secondary / tertiary amines		

Question Number	Acceptable Answers	Reject	Mark
23(b)(i)	ALLOW positive charge anywhere on NH ₃ ALLOW delocalised COO ⁻ group ALLOW structural / displayed / skeletal formulae or any combination of these IGNORE connectivity of OH group / NH ₃ ⁺	Negative charge on O of phenol	1

Question Number	Acceptable Answers		Reject	Mark
23(b)(ii)	H COOH HOOC			2
	H ₂ N CH ₂ OH HOH ₂ C NH ₂			
	1 structure with 4 atoms / groups in any order	(1)		
	Structure on right is mirror image of structure on left	(1)		
	ALLOW zwitterions			

Question Number	Acceptable Answers	Mark
23(b)(iii)	ALLOW displayed / skeletal / structural formulae or any combination of these apart from the linkages which must be displayed	4
	IGNORE brackets and n / bond angles	
	Polyamide	
	H H O H H O H H O H H O H H O H H O H H O H H O H H O H H O H H O H H O H	
	ĊH ₂ ĊH ₂	
	ј он он	
	1 correct displayed amide group in any polyamide (1)	
	rest of structure correct conditional on an amide group - allow this even if amide group is not displayed	
	ALLOW -CO-NH- at start / -CO-NH- at end, but do not allow NH at both ends (1)	
	Polyester	
	1 correct displayed ester group in any polyester (1)	
	rest of structure correct conditional on an ester group - allow this even if ester group is not displayed	
	ALLOW -O-CO- at start / -CO-O- at end, but do not allow the single bond Os at both ends (1)	

Question Number	Acceptable Answers	Reject	Mark
23(c)(i)	ALLOW displayed / skeletal / structural formulae or any combination of these		1
	сно		
	CHO CH ₂		
	ÓН		
	IGNORE connectivity of OH		

Question Number	Acceptable Answers	Reject	Mark
23(c)(ii)	ALLOW displayed / skeletal / structural formulae or any combination of these e.g		1
	(CH ₃) ₂ CHCH(NH ₂)COOH /		
	H H ₂ N—C—COOH H ₃ C—C—H CH ₃		
	ALLOW zwitterion		

Question Number	Acceptable Answers	Reject	Mark
23(d)	Yes, because EITHER the C-H stretching is different in alkanes and arenes / benzene OR tyrosine has an absorption at 3030 (cm ⁻¹) and serine does not OR No, because the broad OH absorption from COOH / (the carboxylic) acid would overlap / mask the different C-H absorptions IGNORE mention of absorptions below 2000 (cm ⁻¹)		1

Question Number	Acceptable Answers	Reject	Mark
23(e)(i)	5 / five (environments)		1

Question Number	Acceptable Answers			Mark
23(e)(ii)		For 'chemical shift' column, allow any range or any single value within range and allow range in the opposite order e.g 3.5 - 2.3		
	Protons in valine	Chemical shift / ppm for TMS	Splitting pattern	
	CH₃	0.1-1.9	doublet / (splits into) 2 (1)	
	СН	0.1-1.9	octet / octuplet/ (splits into) 8 (1)	
	ОН	10(.0)- 12(.0) (1)	singlet	
	IGNORE multipl	et		

(Total for Question 23 = 17 marks)

Section C

Question	Acceptable Answers	Reject	Mark
Number 24(a)(i)	ALLOW any combination of dots and crosses and just dots or just crosses	,	2
	ALLOW any other symbol for extra electrons eg *		
	ALLOW overlapping circles with electrons in correct places		
	IGNORE missing brackets and charge		
	O *O* *O* *O* *O* *O* *O*		
	2 double bonds and 2 single bonds (1)		
	Rest of diagram correct Conditional on M1 (1)		
	IGNORE other diagrams, such as displayed formula		
	IGNORE shape		
	ALLOW 4 single bonds between S and O (1)	4 double bonds	
	Rest of diagram correct Conditional on M1 (1)		

Question Number	Acceptable Answers	Reject	Mark
24(a)(ii)	Tetrahedral		1
	ALLOW triangular based pyramidal		
	IGNORE pyramidal		

Question Number	Acceptable Answers	Reject	Mark
24(a)(iii)	Correct answer with no working scores (2) marks EITHER mass of PbSO ₄ dissolved in 250.0 cm ³ $= 1.26 \times 10^{-4} \times 303.3 \times \frac{250.0}{1000}$ $= 9.55395 \times 10^{-3} \text{ (g)} \tag{1}$ mass undissolved PbSO ₄ $= 0.0500 - 9.55395 \times 10^{-3}$ $= 0.040446 / 0.04045 / 0.0404 / 0.04(0) \text{ (g)} \text{ (1)}$ TE on mass dissolved in 250.0 cm ³ OR mol PbSO ₄ added = $\frac{0.0500}{303.3}$ = 1.6485 x 10 ⁻⁴ and		2
	mol PbSO ₄ dissolved in 250 cm ³ $= 1.26 \times 10^{-4} \times \frac{250.0}{1000}$ $= 3.15 \times 10^{-5}$ mol undissolved PbSO ₄ $= 1.6485 \times 10^{-4} - 3.15 \times 10^{-5}$ $= 1.3335 \times 10^{-4}$ and mass undissolved PbSO ₄ $= 1.3335 \times 10^{-4} \times 303.3$ $= 0.040446 / 0.04045 / 0.0404 / 0.04(0) (g) (1)$ TE on mol dissolved in 250 cm ³		

Question Number	Acceptable Answers	Reject	Mark
24(b)(i)	$Na_2S_2O_7 \rightarrow Na_2SO_4 + SO_3$		1
	ALLOW multiples		
	IGNORE state symbols, even if incorrect		

Question Number	Acceptable Answers	Reject	Mark
24(b)(ii)	$(NH_4)_2Cr_2O_7 \rightarrow Cr_2O_3 + N_2 + 4H_2O$		1
	ALLOW multiples		
	IGNORE state symbols, even if incorrect		

Question Number	Acceptable Answers	Reject	Mark
24(c)(i)	$CrO_4^{2^-}(aq) + 4H_2O(l) + 3e^{(-)} \Rightarrow$ $Cr(OH)_3(s) + 5OH^-(aq)$ and $-0.13 (V)$ ALLOW \rightarrow IGNORE missing state symbols IGNORE square brackets around $Cr(OH)_3$	Half-cell	1

Question Number	Acceptable Answers	Reject	Mark
24(c)(ii)	$FeO_4^{2-}(aq) / FeO_4^{2-}$	Additional species	1

Question Number	Acceptable Answers	Reject	Mark
24(c)(iii)	$3MnO_4^{2^-}(aq) + 2H_2O(l) \rightarrow 2MnO_4^-(aq) + MnO_2(s) + 4OH^-(aq)$ State symbols are required		1

Question Number	Acceptable Answers	Reject	Mark
24(c)(iv)	(+)0.83 (V) / .83 (V)	-0.83 (V)	1

Question	Acceptable Answers		Mark
Number 24(c)(v)	hydrogen gas 1 atm platinum 1 mol dm ⁻³ H+(aq) salt bridge 1 mol dm ⁻³ w.r.t. Cr ₂ O ₇ ²⁻ and Cr ³⁺ acidified/ H+(aq)		5
	ALLOW half-cells reversed		
	Hydrogen half-cell: Solution 1 mol dm ⁻³ H ⁺ (aq) and platinum (black) electrode		
	ALLOW 1 mol dm ⁻³ hydrochloric acid / HCl / nitric acid / HNO ₃		
	ALLOW 0.5 mol dm ⁻³ sulfuric acid (1	1)	
	Hydrogen gas at 1 atm / 1.01 x 10 ⁵ Pa / 100 kPa pressure / 1 bar	(1)	
	Chromium half-cell: Solution 1 mol dm ⁻³ / equimolar with respect to dichromate / Cr ₂ O ₇ ²⁻ ions and chromium(III) / Cr ³⁺ ions (in the same beaker)	1)	
	Acidified / H ⁺ (aq) / HCl IGNORE concentration of acid and platinum electrode	1)	
	Connections: Salt bridge dipping into both solutions and voltmeter to measure Standard Electrode Potential and complete circuit		
	ALLOW a salt bridge drawn and just labelled with the electrolyte		
	Do not award this mark if the circuit is incorrect, e.g a cell is included. Ignore ammeter. (1)	

Question Number	Acceptable Answers	Reject	Mark
24(d)(i)	6:1		1
	OR		
	<u>6</u>		
	ALLOW		
	$Cr_2O_7^{2-}: S_2O_3^{2-} = 1:6 / \frac{1}{6}$		
	IGNORE all working		

Question Number	Acceptable Answers		Reject	Mark
*24(d)(ii)	Correct answer with no working scores (6)			6
	M1 mol $S_2O_3^{2-} = 0.030 \times 9.20/1000$ = 2.76 x 10 ⁻⁴	(1)		
	M2 mol $Cr_2O_7^{2-}$ left = 2.76 x $10^{-4}/6$ = 4.60 x 10^{-5} OR			
	mol I ₂ = 2.76 x 10 ⁻⁴ /2 = 1.38 x 10 ⁻⁴ and			
	mol $Cr_2O_7^{2-}$ left = 1.38 x $10^{-4}/3$ = 4.60 x 10^{-5} TE on mol ratio in (i)	(1)		
	M3 original mol $Cr_2O_7^{2-} = 0.015 \times 10.0/1000$ = 1.50 x 10 ⁻⁴	(1)		
	M4 mol $Cr_2O_7^{2-}$ reacted with C_2H_5OH = 1.50 x 10 ⁻⁴ - 4.60 x 10 ⁻⁵ = 1.04 x 10 ⁻⁴			
	and mol C_2H_5OH in 1.00 cm ³ diluted wine = 1.04 x 10 ⁻⁴ x 3/2 = 1.56 x 10 ⁻⁴			
	TE on original mol $Cr_2O_7^{2-}$ and mol $Cr_2O_7^{2-}$ reacted with C_2H_5OH	(1)		
	M5 mol C_2H_5OH in 100 cm ³ diluted wine / 5.00 cm ³ origin wine = 1.56 x 10^{-4} x $100 = 1.56$ x 10^{-2}	nal		
	TE on mol C₂H₅OH in 1.00 cm³ diluted wine	(1)		
	$\label{eq:mass} \begin{array}{ll} \text{M6 mass C_2H$_5$OH in 5.00 cm3 original wine} \\ &= 1.56 \times 10^{-2} \times 46 \\ &= \textbf{0.7176} \ / \ \textbf{0.718} \ / \ \textbf{0.72} \ (g) \\ \text{TE on mol C_2H$_5$OH in 100 cm3 diluted wine} / 5.00 cm3 original wine} \end{array}$	inal (1)		
	IGNORE SF except 1 SF			

(Total for Question 24 = 23 marks)

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom