

Mark Scheme (Results)

January 2016

Pearson Edexcel International Advanced Level in Chemistry (WCH05) Paper 01 - General Principles of Chemistry II (including synoptic assessment)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2016
Publications Code IA043134*
All the material in this publication is copyright
© Pearson Education Ltd 2016

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
 - i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
 - ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
 - iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

/ means that the responses are alternatives and either answer should receive full credit.

() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

Phrases/words in **bold** indicate that the <u>meaning</u> of the phrase or the actual word is **essential** to the answer.

ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities. Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A

Question Number	Correct Answer	Reject	Mark
1	В		1
Question Number	Correct Answer	Reject	Mark
2(a)	D		1
_		1	1
Question Number	Correct Answer	Reject	Mark
2(b)	D		1
Question Number	Correct Answer	Reject	Mark
3	С		1
Question Number	Correct Answer	Reject	Mark
4	Α		1
			+
Question Number	Correct Answer	Reject	Mark
5	С		1
			_
Question Number	Correct Answer	Reject	Mark
6	D		1
			_
Question Number	Correct Answer	Reject	Mark
7	С		1
			_
Question Number	Correct Answer	Reject	Mark
8	D		1
	<u> </u>	1	
Question Number	Correct Answer	Reject	Mark
9	D		1
		1	
Question Number	Correct Answer	Reject	Mark
10	Α		1
. •	1 **	1	
Question Number	Correct Answer	Reject	Mark
11	В		1
11	D		Т

Question Number	Correct Answer	Reject	Mark
12	Α		1
Question Number	Correct Answer	Reject	Mark
13	Α		1
Question Number	Correct Answer	Reject	Mark
14	В		1
Question Number	Correct Answer	Reject	Mark
15(a)	В		1
Question Number	Correct Answer	Reject	Mark
15(b)	D		1
Question Number	Correct Answer	Reject	Mark
16	С		1
Question Number	Correct Answer	Reject	Mark
17	С		1
Question Number	Correct Answer	Reject	Mark
18	В		1

TOTAL FOR SECTION A = 20 Marks

Section B

Question Number	Correct Answer	Reject	Mark
19(a)	Mark independently (Platinized) Platinize Glassware with oxygen and 1 atm pressure Tube carrying oxygen must be open at the bottom but not after the feed at the top (Platinised) platinum/Pt (electrode) and 298 K/ 25°C (1)		3
	Hydrochloric acid/HCl(aq), covering some of the electrode and 1 mol dm ⁻³ OR 1 mol dm ⁻³ H ⁺ covering electrode (1) A fully correct hydrogen electrode 2max	Sulfuric acid	

Question Number	Correct Answer	Reject	Mark
19(b)	$CH_3OH + 1\frac{1}{2}O_2 \rightarrow CO_2 + 2H_2O$ OR multiples	Uncancelled electrons, H ⁺ ions and H ₂ O	1

Question Number	Correct Answer	Reject	Mark
19(c)	$E^{\circ}_{\text{cell}} = +1.23 - 0.02$		1
	= (+) 1.21 (V)	- 1.21 (V)	

Question Number	Correct Answer	Reject	Mark
19(d)	Additional Comment Note that the words advantage and disadvantage are not required		2
	(Advantages)		
	Any one from:		
	Easier to store/transport than hydrogen (as a liquid rather than a gas)		
	OR		
	Methanol can be produced from waste / methanol is renewable		
	OR		
	Energy per volume is greater (1)		
	IGNORE		
	Hydrogen is flammable/ explosive		
	(Disadvantages)		
	Any one from:		
	Produces CO ₂		
	OR		
	Low efficiency		
	OR		
	Limited power/energy (1)		
	OR		
	Lower emf/E value		
	IGNORE		
	Land used up in producing methanol instead for crops		

Question Number	Correct Answer	Reject	Mark
20(a)	C ₇ H ₆ O ₃		1
	IGNORE		
	Any other formulae eg C ₆ H ₄ OHCOOH		

Question Number	Correct Answer		Reject	Mark
20(b)	NaCO₃ scores 0			2
	$ \begin{array}{c} 2C_6H_4OHCOOH \ + \ Na_2CO_3 \rightarrow \\ 2C_6H_4OHCOO^{(-)}Na^{(+)} \ + \ CO_2 \ + \ H_2O \end{array} $		н со /	
	Entities	(1)	$H_2CO_3/C_7H_6O_3$	
	Balancing correct entities/H ₂ CO ₃ /C ₇ H ₆ O ₃			
	ALLOW			
	Incorrect hydrogens in organic formula or both sides	n (1)		
	ALLOW other correct formulae for 2-hydroxybenzoic acid			
	Fully correct ionic equation (2)			
	IGNORE			
	State symbols even if incorrect			

Question Number	Correct Answer	Reject	Mark
20(c)(i)	OR OP		1
	Ignore bond angles around H ALLOW		
	Two hydrogen bonds within one molecule between phenol and carboxylate groups		

Question Number	Correct Answer	Reject	Mark
20(c)(ii)	First mark		2
	4-hydroxybenzoic acid has a higher melting temperature with some attempt at justification which may not be correct (1)	Lower/same melting temperature loses first mark	
	Second mark	mark	
	EITHER		
	There are (more) hydrogen bonds between molecules		
	OR		
	chains of molecules held together by hydrogen bonds		
	OR		
	So more hydrogen bonds have to be broken		
	OR		
	More energy is needed to break the extra hydrogen bonds		
	OR		
	The intramolecular hydrogen bonds in 2-hydroxybenzoic acid do not need to be broken (1)		
	Or reverse argument		

Question Number	Correct Answer	Reject	Mark
20(d)	Scroll down answer to check name first	Look out for substitution of the phenol group or the	2
	OR COOH for carboxylic acid group (1)	carboxylic acid group 0 out of 2	
	3,5-dibromo-2-hydroxybenzoic acid		
	ALLOW		
	2-hydroxy-3,5-dibromobenzoic acid (1)		
	TE for name on their incorrect mono/di/tri/tetra substituted product for 1 max		

Question Number	Correct Answer		Reject	Mark
20(e)(i)	Methanol	(1)		2
	(Concentrated) sulfuric acid		Nitric acid	
	ALLOW			
	(concentrated) hydrochloric acid			
	IGNORE			
	Acidic conditions			
	And			
	Heat/reflux/warm/any temperaturabove 25°C	re		
	Second mark dependent on an ald in MP1	cohol (1)		

Question Number	Correct Answer	Reject	Mark
20 (e)(ii)	Methyl 2-hydroxybenzoate molecules are held together by (strong) London/ dispersion forces		3
	IGNORE		
	Dipole forces and hydrogen bonds (1)		
	Less / limited hydrogen bond between water and methyl 2-hydroxybenzoate (so sparingly soluble) (1)		
	The hydrogen bonding between water molecules is (very) strong (1)		
	Insufficient energy released to break hydrogen bonds in water/ London forces in methyl 2-hydroxybenzoate (1)		
	(Some of the) hydrogen bonds are internal in methyl 2-hydroxybenzoate (1)		
	The oxygens in methyl 2- hydroxybenzoate can form hydrogen bonds to the hydrogens of water molecules		
	OR		
	The hydrogen on the oxygen in methyl 2-hydroxybenzoate can form hydrogen bonds to the oxygens of water molecules (1)		

Question Number	Correct Answer	Reject	Mark
20 (e)(iii)	ALLOW		3
(0)()	Correct formulae for names		
	First mark		
	Sodium hydrogencarbonate (solution)		
	ALLOW		
	Sodium carbonate (solution)		
	IGNORE water (1)		
	Second mark		
	to neutralise/ remove remaining acids (1)		
	IGNORE references to saturated sodium chloride solution to reduce solubility of ester		
	Third mark		
	(Dried with) (anhydrous)		
	sodium sulfate	A	
	OR	Anything else	
	magnesium sulfate		
	OR		
	calcium sulfate		
	OR		
	calcium chloride (1)		

Question Number	Correct Answer	Reject	Mark
20 (e)(iv)	OR Distil off the ethyl ethanoate	Steam distillation Solvent extraction	1
	ALLOW Fractional distillation/redistillation		

Question Number	Correct Answer	Reject	Mark
20(e)(v)	First marking point		2
	A is methyl 2-hydroxybenzoate		
	OR		
	B is 2-hydroxybenzoic acid		
	and a bond / wavenumber considered (eg O-H, C-O, C=O, C-H in CH ₃) (1)		
	Second marking point This is independent of the first mark		
	Any one bond with wavenumber from:		
	In spectrum B the carboxylic acid OH between 3300 and 2500 (cm ⁻¹)		
	In spectrum A no broad peak between 3300 and 2500 (cm ⁻¹)		
	In spectrum A, C-O (benzoate) between 1150-1100 (cm ⁻¹) and/or 1310-1250 (cm ⁻¹)	C=O in acid/ester	
	In spectrum A alkyl C-H between 2962 – 2853 (cm ⁻¹)	ester	
	IGNORE (1)		
	In spectrum A phenol/OH peak between 3300 and 3100 (cm ⁻¹)		
	OR		
	C-H arene		

Question Number	Correct Answer		Reject	Mark
20(e)(vi)	moles of 2-hydroxybenzoic acid = $\frac{9.00}{138}$ = 0.0652			3
	and			
	moles of methyl 2-hydroxybenzoate = $0.6 \times 0.0652 = 0.0391$	(1)		
	Mass of methyl 2-hydroxybenzoate = 0.0391 x 152 = 5.948 (g)	(1)		
	Volume of methyl 2-hydroxybenzoate = 5.948/1.174 = 5.066 = 5.07 cm ³			
	Correct volume with no working 3 marks	(1)		
	ALLOW	(1)		
	Internal TE s eg			
	For 100% gives 9.91(3) g and 8.44(4) cm	າ ³ (2)		
	IGNORE SF			

(Total for Question 20 = 22 marks)

Question Number	Correct Answer	Reject	Mark
21(a)(i)	3d ⁵ 4s ¹ /4s ¹ 3d ⁵		1
	ALLOW		
	Complete configuration $1s^22s^22p^63s^23p^64s^13d^5$		
	ALLOW		
	Capitals and subscripts		

Correct Answer		Reject	Mark
It is 4s ¹ rather than 4s ² because with two of the reasons below			2
3d ⁵ / half-filled 3d sub shell is particularly stable	(1)		
The paired electrons repel	(1)		
All six electrons are in separate orbitals (minimizing repulsion)	(1)		
ALLOW			
transfer 4s to 3d is small OR			
	It is 4s¹ rather than 4s² because with two of the reasons below 3d⁵/ half-filled 3d sub shell is particularly stable The paired electrons repel All six electrons are in separate orbitals (minimizing repulsion) ALLOW The energy required to promote/ transfer 4s to 3d is small OR The energy difference between 4s	It is 4s¹ rather than 4s² because with two of the reasons below 3d⁵/ half-filled 3d sub shell is particularly stable (1) The paired electrons repel (1) All six electrons are in separate orbitals (minimizing repulsion) (1) ALLOW The energy required to promote/ transfer 4s to 3d is small OR The energy difference between 4s and	It is 4s¹ rather than 4s² because with two of the reasons below 3d⁵/ half-filled 3d sub shell is particularly stable (1) The paired electrons repel (1) All six electrons are in separate orbitals (minimizing repulsion) (1) ALLOW The energy required to promote/ transfer 4s to 3d is small OR The energy difference between 4s and

Question Number	Correct Answer	Reject	Mark
21(b)(i)	$(E^{\circ} Zn^{2+}(aq) Zn(s) = -0.76 V$		3
	$E^{\circ} \operatorname{Cr}^{3+}(aq), \operatorname{Cr}^{2+}(aq) \operatorname{Pt} = -0.41 \operatorname{V}$		
	E^{e} [Cr ₂ O ₇ ²⁻ (aq) + 7H ⁺ (aq)], [2Cr ³⁺ (aq) + 7H ₂ O(I)] Pt = +1.33 V)		
	If no other mark is scored, data scores (1) however shown		
	Calculation of $E_{\text{cell}}^{\bullet}$ values:		
	E_{cell}^{θ} for first step = 1.330.76 = (+)2.09 (V) (1)		
	E°_{cell} for second step = -0.410.76 = (+)0.35 (V) (1)		
	As (both) values are positive, (both) reactions are spontaneous/feasible (1)		
	Third mark is independent		

Question Number	Correct Answer	Reject	Mark
21(b)(ii)	Orange to green to blue		1
	IGNORE qualifying words eg pale blue		

Question Number	Correct Answer	Reject	Mark	
21 (b)(iii)	The small amount of hydrogen produced (does not present a serious risk)		1	
	ALLOW			
	"Less" for small amount Indication of ventilation			

Question Number	Correct Answer	Reject	Mark
21(c)(i)	It is bridging/ bidentate ligand	Polydentate	1

Question Number	Correct Answer	Reject	Mark
21(c)(ii)	Dative (covalent) (bonds)/		1
	co-ordinate (bonds)		

Question Number	Correct Answer		Reject	Mark
21 (c)(iii)	Any two from:			2
	Chromium atoms/ ions are covalen bonded/bonded to each other	ntly		
	OR			
	Two (chromium) ions/ chromium atoms in the complex	(1)		
	Each ethanoate ligand forms bonds two different atoms/ ions	s to (1)		
	Ethanoate ions are not normally bidentate ligands	(1)		
	ALLOW Contains both monodentate and bidentate ligands		Just "two different	
	Allow six ligands and complex not	(1) (1)	ligands"	
Question	Correct Answer		Reject	Mark

Question Number	Correct Answer		Reject	Mark
21 (c)(iv)	The energies of the d electron lever are split to different extents (by different ligands)	els		2
	d-d (orbitals) splitting is different OR			
	d-d transitions are different	(1)		
	So different energy/ frequency/ wavelength light absorbed	(1)	(just) transmitted	

Question Number	Correct Answer	Reject	Mark
21(c)(v)	There are two peaks as two different hydrogen environments (1)		2
	EITHER The areas due to hydrogen in water molecules compared to hydrogen in ethanoate ions is in the ratio 1 to 3/4 to 12 OR		
	As there are 4 hydrogen atoms in water and 12 hydrogen atoms in ethanoate ions (1)		

Question Number	Correct Answer	Reject	Mark
21(d)	First mark Dilution factor:		5
	moles of chromium(II) ethanoate in 25.0 cm ³ = $\frac{2.66 \times 10^{-3}}{10}$ = 2.66 x 10^{-4} (1))	
	Second mark Ratio of manganate(VII) to chromium		
	4 mol manganate(VII) react with 5 mol of chromium (II)		
	OR		
	8 mol mangante(VII) react with 5 mol of chromium(II) ethanoate (1)		
	Third mark moles of manganate(VII) ion = $4 \times 5.32 \times 10^{-4}$ OR $8 \times 2.66 \times 10^{-4}$ 5 5 = 4.256×10^{-4} (1)		
	Fourth mark Volume of manganate(VII) solution $= \underbrace{4.256 \times 10^{-4} \times 1000}_{0.00750}$ $= 56.75 \text{ cm}^3$ (1)		
	Correct answer no working (4)		
	28.375 cm ³ gets (3)		
	Fifth mark This is unsuitable/ inaccurate because it requires refilling the burette hence increasing burette erro	r	
	OR		
	Better to use more concentrated potassium manganate(VII) OR less chromium ethanoate (1		

(Total for Question 21 = 21 marks)
TOTAL FOR SECTION B = 50 Marks

Section C

Question Number	Correct Answer	Reject	Mark
22(a)	X-ray diffraction/crystallography	X-rays alone X radiation	1
		IR/UV/nmr	

Question Number	Correct Answer		Reject	Mark
22(b)	Mark independently			3
	First mark:			
	ALLOW Single ring and two double bonds		Single ring and three double bonds	
	Single ring around all atoms (1	1)		
	Second mark: EITHER electrons delocalised (around the ring(s))		delocalised orbitals	
	OR			
	pi system around all (10) carbon atoms (1	1)		
	Third mark:			
	EITHER overlap of p-orbitals			
	OR			
	p/ pi-/ π / 10 (ALLOW pie) electrons	1)		
	ALLOW	1)		
	six electrons if single ring and two double bonds shown			
	Phthalic anhydride structure 2 max			

Question	Correct Answer	Reject	Mark
Number 22(c)	First mark Formation of nitronium ion (may combine equations) 2H ₂ SO4 + HNO ₃ → +NO ₂ /NO ₂ + + H ₃ O+ + 2HSO ₄ - OR H ₂ SO4 + HNO ₃ → +NO ₂ /NO ₂ + + H ₂ O + HSO4- OR		4
	$H2SO4 + HNO3 \rightarrow H_2NO_3^+ + HSO_4^-$ And		
	$H2NO_3^+ \rightarrow NO_2^+ + H_2O$		
	Charges are needed for first mark		
	TE on incorrect electrophile If benzene used instead of naphthalene 3 max Do not penalise the use of Phthalic anhydride Correct Kekulé structures score full marks ALLOW multiple nitrations		

Second mark Curly arrow from on or within the circle to (positive) N ALLOW Curly arrow from anywhere within the hexagon Arrow to any part of the electrophile including to the + charge (which can be anywhere on	Curly arrow on or outside the hexagon
electrophile), OR Arrow to a point at least half the distance between ring and electrophile (1)	
Third mark Intermediate structure including charge with horseshoe covering at least 3 carbon atoms, and facing the tetrahedral carbon and with some part of the positive charge within the horseshoe.	Partial bonds to H or Subs group
ALLOW dotted horseshoe (1)	
IGNORE	
displayed nitro group even if incorrect A single lapse of omitting internal circle or double bonds in 3 rd or 4 th mark	
Fourth mark If final product not 1, 4, 5 or 8 MP4 cannot be scored Curly arrow from C—H bond to anywhere in the ring reforming delocalised structure of a correct stable molecule. (1)	H ₂ / H product
IGNORE	
Absence of HSO ₄ ⁻ /H ₂ SO ₄ /H ⁺	

Question Number	Correct Answer	Reject	Mark
22(d)	C ₁₀ H ₈		3
	This mark can be awarded if the molar mass of naphthalene has been used as 128 even if the skeletal formula in the equation has been used (1)		
	$C_{10}H_8 + 12O_2 \rightarrow 10CO_2 + 4H_2O$ (1)		
	ALLOW The balanced equation with skeletal formula of naphthalene scores both marks		
	Ignore state symbols even if incorrect		
	Number of moles of naphthalene = $\frac{1.28}{128}$ = 0.01(00)		
	Volume of gas = $10 \times 0.01 \times 24.0$ = $2.4(0) \text{ dm}^3 / 2400 \text{ cm}^3$ (1)		
	ALLOW TE on incorrect formula of naphthalene for max 2		

Question Number	Correct Answer		Reject	Mark	
22(e)	Hydrogen /H ₂	(1)	H alone loses first mark but	2	
	Second mark is consequential Hydrogen	on	not second		
	Heat/any specified temperature a 100°C	bove			
	And				
	nickel/ Ni /platinum/ Pt/ palladiun Pd catalyst	n / (1)			

Question Number	Correct Answer	Reject	Ma rk	Ì
22(f)(i)	Water/H ₂ O		1	Ì

Question Number	Correct Answer	Reject	Mark
22(f)(ii)	(In strong acid) an oxygen (in the C-O/C=O/O-H bond) will protonate/gain H/H ⁺		2
	(1)		
	(In alkali) a proton is lost from each/both phenol group(s)		
	ALLOW		
	(In alkali) a proton/hydrogen/ H/H ⁺ is lost from phenol group(s) (1)		

Question Number	Correct Answer	Reject	Mark
22(g)	Phenylamine is added to a mixture of sodium nitrite/ sodium nitrate(III)/ NaNO ₂ and (dilute) hydrochloric acid/ HCl/ sulfuric acid/ H ₂ SO ₄	Just sodium nitrate	4
	nitrous acid/ HNO ₂ (1)		
	at 5°C/between 0 and 10°C/ at 10°C/ or less than 10°C		
	ALLOW		
	ice bath		
	ALLOW any temperature or range of temperatures within that range (1)		
	(A mixture of 2-naphthol and) aqueous sodium hydroxide/alkali is added to produce a dye (1)		
	No M		
	OR rings in hexagons		
	ALLOW		
	C ₆ H ₅ N ₂ group at any carbon except fused carbons (1)		

(Total for Question 22 = 20 marks)
TOTAL FOR PAPER = 90 Marks