edexcel

Mark Scheme (Results)

January 2016

Pearson Edexcel International Advanced Level in Chemistry
(WCH04) Paper 01 - General Principles of Chemistry I

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2016
Publications Code IA043131*
All the material in this publication is copyright
© Pearson Education Ltd 2016

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to: - write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear

- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.
Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A

Question Number	Correct Answer	Reject	Mark
$\mathbf{1}$	D		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{2}$	D		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{3}$	A		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{4}$	C		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{5 a}$	C		1

Question Number	Correct Answer	Reject	Mark
5b	B		1

Question Number	Correct Answer	Reject	Mark
5c	C		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{6}$	A		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{7}$	D		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{8}$	B		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{9 a}$	A		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{9 b}$	B		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 0}$	B		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 1}$	B		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 2}$	D		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 3 a}$	C		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 3 b}$	C		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 3 c}$	D		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 4}$	D		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 5}$	A		1

TOTAL FOR SECTION A = $\mathbf{2 0}$ Marks

Section B

Question Number	Acceptable Answers	Reject	Mark
16a	TWO of Bromine / Br_{2} by colorimetry Carbon dioxide / CO_{2} by (measurement of) gas volume / mass change ALLOW Hydrogen ions / H^{+}and / or bromide ions / Br- By electrical conductivity ALLOW Hydrogen ions / H^{+} by pH measurement	Dilatometry Sampling methods $\mathrm{Br} / \mathrm{Br}^{-}$ Calorimetry Just 'gas syringe' 'measure amount of gas^{\prime} 'use balance' Br_{2} or bromine $\begin{equation*} \mathrm{HCOOH} \tag{1} \end{equation*}$	2

Question Number	Acceptable Answers	Reject	Mark
16b(i)	Suitable scale so the points cover more than half of grid in both directions and axes labelled Horizontal axis labelled time /s ALLOW (s) Vertical axis labelled $\left[\mathrm{Br}_{2}\right] / \mathrm{mol}$ dm^{-3} ALLOW $\mathrm{mol} / \mathrm{dm}^{3}$ $\left[\mathrm{Br}_{2}\right] \times 10^{-3} / \mathrm{mol} \mathrm{dm}^{-3}$ Correct plotting of all points with smooth curve through all points ALLOW Minor wobbles	Non uniform scale scores 0 Br_{2} for $\left[\mathrm{Br}_{2}\right]$ Straight lines between points	2

Question Number	Acceptable Answers 16b(ii)		Reject	Mark

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 6 b}$ (iii)	Concentration of methanoic acid does not change (significantly) during course of reaction (as it is so much greater than concentration of bromine)	Methanoic acid is not involved in the rds Just 'it is in excess'	1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 6 b (i v)}$	Rate/ $\mathrm{r} / \mathrm{R}=\mathrm{k}\left[\mathrm{Br}_{2}\right]^{(1)}[\mathrm{HCOOH}]^{(1)}$	Omission of Rate/ r/R $\mathrm{Br} / \mathrm{CHOOH}$	1
	Formulae must be correct	/HCOH Lack of square brackets	
	ALLOW Upper case K for k		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 6 b (v)}$	$\mathrm{k}=\frac{4.54 \times 10^{-5}}{0.01 \times 0.5}$		2
$=9.08 \times 10^{-3} / 0.00908 \quad$ (1)			
Mark units independently but must match rate equation in 16(b)(iv)			
$\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ (in any order) (1)			
TE on rate equation IGNORE SF NOTE If first order then units are s ${ }^{-1}$			

(Total for Question 16 = 11 marks)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 a}$	Heptan-2-one ALLOW Hept-2-one Hepta-2-one Heptane-2-one 2-heptanone Heptanone	1	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 b}$	(Warm with) iodine and sodium hydroxide/ iodine in the presence of alkali EITHER Yellow and precipitate with A only	Just 'iodoform test'	2
	OR Yellow and precipitate with A, no change with B	Measure the melting point of the hydrazone	ALLOW Antiseptic smell with A only ALLOW Correct result following use of just 'iodoform test' for second mark

Question Number	Acceptable Answers	Reject	Mark
17c	Test 2 may be given before test 1 Allow a correct result with a nearly correct test eg no acid in dichromate test scores 0 for test but scores 1 for the result remains orange Test 1: (Warm with) Brady's reagent / (2,4-)dinitrophenylhydrazine / (2,4)DNP(H) Yellow/ orange/ red and precipitate/ solid/ crystals and confirms $\mathrm{C}=\mathrm{O}$ / carbonyl/ aldehyde or ketone Test 2: Any one from (Warm/boil with) Fehling's solution/ Benedict's solution No red-brown/ brown/ orange ppt / stays blue, confirms not an aldehyde ALLOW No reaction confirms not an aldehyde/ so it is a ketone OR Test 2: (Warm with) Tollens' reagent/ ammoniacal silver nitrate No silver mirror/ grey black or silver ppt confirms not an aldehyde ALLOW No reaction confirms not an aldehyde/ so it is a ketone OR (Warm with) potassium/sodium dichromate((VI)) and sulfuric acid/ $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ and H^{+} ALLOW (Warm with) acidified (potassium/ sodium) dichromate((VI)) remains orange / does not go green confirms not an aldehyde ALLOW No reaction confirms not an aldehyde/ so it is a ketone		4

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 e (i i)}$	Forms a racemic mixture / (1) racemate Cyanide can attack (equally) from either side/ above or below (1) Because bonds round C=O are (trigonal) planar / I C=O is planar $/$	Ketone/ the molecule is planar	3
	OR Carbonyl group / C=O group / reaction site is planar planar OR Bonds around carbonyl carbon are planar (1)	carbocation / intermediate is planar	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 8 a}$	$\mathrm{K}_{\mathrm{p}}=\mathrm{p}\left(\mathrm{CH}_{3} \mathrm{OH}\right)$	Square brackets $\mathrm{p}(\mathrm{CO})(\mathrm{x}) \mathrm{p}\left(\mathrm{H}_{2}\right)^{2}$	1
	Expressions without $\mathrm{p} / \mathrm{pp} /$		
	Lower or upper case p / pp Lowpres Expression without brackets $\mathrm{p}^{2} \mathrm{H}_{2}$ P_{co} etc	partial pressure	

Question Number	Acceptable Answers	Rej ect	Mark
18c	(K_{p} is smaller so reaction does not go as far to right) reaction is exothermic/ $\Delta \mathrm{H}$ is negative $\Delta S_{\text {surroundings }}=-\Delta H / T$ so is positive ALLOW If in explaining $\Delta S_{\text {surroundings }}$ is $+v e$, the expression $\Delta \mathrm{S}_{\text {surroundings }}=-$ $-\Delta \mathrm{H} / \mathrm{T}$ is quoted, then the mark can be awarded IGNORE References to $\Delta S_{\text {total }}=\operatorname{RInK}$ Endothermic reaction scores 0	$\begin{align*} & \text { Absence of } \tag{1}\\ & \Delta \mathrm{S}_{\text {surroundings }}=- \\ & \Delta \mathrm{H} / \mathrm{T} \end{align*}$	2
Question Number	Acceptable Answers	Reject	Mark
18d	$\begin{align*} & +3 \mathrm{C}_{15} \mathrm{H}_{31} \mathrm{COOCH}_{3} / \mathrm{CH}_{3} \mathrm{OOCC}_{15} \mathrm{H}_{31} / \tag{1}\\ & \mathrm{CH}_{3} \mathrm{OCOC}_{15} \mathrm{H}_{31} \tag{1} \end{align*}$ ALLOW partially displayed or skeletal formulae		2

(Total for Question 18 = 10 marks)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 9 a}$	Proton/ H^{+}donor		1
Question Number Acceptable Answers Reject Mark $\mathbf{1 9 b}$ pH of $\mathrm{HCl}=1$ and pH of weak acid is greater /higher than 1 Allow any number >1 and <7 Different (from 1)	1		

Question Number	Acceptable Answers	Reject	Mark
19c(i)	$\mathrm{HCOOH} /$ methanoic acid is stronger because its K_{a} is bigger/higher OR its pK_{a} is smaller / lower (The data: IGNORE Discussion of inductive effect		1

Question Number	Acceptable Answers	Reject	Mark
19c(ii)	$\left(\mathrm{HCOOH}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}\right) \rightleftharpoons \mathbf{H C O O}^{-}+\mathbf{C}_{\mathbf{2}} \mathbf{H}_{5} \mathbf{C O O H}_{\mathbf{2}}{ }^{+}$ ALLOW TE for equation with propanoic acid as proton donor giving $\mathrm{HCOOH}_{2}{ }^{+}$and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-}$if HCOOH is stated to be weaker	$\begin{aligned} & \mathrm{COOH}^{-} \\ & \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{COOH}^{+} \end{aligned}$	1

Question Number	Acceptable Answers	Reject	Mark	
$\mathbf{1 9 d}$	$\left[\mathrm{H}^{+}\right]=\left(1 \times 10^{-14} /\left[\mathrm{OH}^{-}\right]\right)$ $=2 \times 10^{-13}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ $\mathrm{pH}=12.7$ OR $\mathrm{pOH} /-\log 0.05=1.3$ $\mathrm{pH}=(14-1.3=) 12.7$ Correct answer with no working scores 2 provided at least 3 SF Allow TE on first mark provided answer >7	(1)		2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 9 e (i)}$	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}+\mathrm{NaOH} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{(-)} \mathrm{Na}^{(+)}+\mathrm{H}_{2} \mathrm{O}$		1
	ALLOW \rightleftharpoons for \rightarrow $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-}+\mathrm{Na}^{+}$for $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{(-)} \mathrm{Na}^{(+)}$		
IGNORE State symbols even if incorrect			

Question Number	Acceptable Answers	Reject	Mark
19e(ii)	Allow salt/ $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COONa}$ / propanoate ion/ $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-}$/ base for A^{-} Allow propanoic acid/ $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}$ for HA First mark $\begin{aligned} & \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \\ & \text { OR } \mathrm{K}_{\mathrm{a}}=\log \left[\mathrm{H}^{+}\right]+\log \left[\mathrm{A}^{-}\right] /[\mathrm{HA}] \end{aligned}$ OR $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}-\log [\mathrm{HA}] /\left[\mathrm{A}^{-}\right]$ ALLOW any of these equations re-arranged or used correctly Next four marks Mol NaOH before mixing $=$ $(20 \times 0.05 / 1000)=0.001$ and mol propanoic acid before mixing $=$ $\begin{equation*} (20 \times 0.25 / 1000)=0.005 \tag{1} \end{equation*}$ Mol propanoate in mixture $=0.001$ OR [propanoate] $=(0.001 / 40 \times 1000)$ $\begin{equation*} =0.025\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \tag{1} \end{equation*}$ Mol propanoic acid in mixture $=0.004$ OR [propanoic acid] $=(0.004 / 40 \times 1000)$ $=0.1\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ $\left[\mathrm{H}^{+}\right]=\frac{\left(1.3 \times 10^{-5}\right)(0.1)}{0.025}$ $\begin{equation*} \mathrm{pH}=4.28 / 4.3 \tag{1} \end{equation*}$ Correct pH with no working scores last 4 marks ALLOW Other methods leading to 4.28 e.g. based on equal volumes being mixed so mol propanoate are in double the volume and so concentration is $0.025 \mathrm{~mol} \mathrm{dm}^{-3}$		5

Question Number	Acceptable Answers	Reject	Mark
19e(iii)	First mark The mixture contains a large amount/ reservoir of a (weak) acid/propanoic acid and its conjugate base/ propanoate ions /salt Second mark Only awarded if at least one equation given Added OH^{-}combines with H^{+} $\left(\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}\right.$) from propanoic acid followed by dissociation of more propanoic acid $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH} \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-}+\mathrm{H}^{+}$ OR Added OH^{-}combines with propanoic acid $\begin{align*} & \mathrm{OH}^{-} \\ & \mathrm{H}_{2} \mathrm{O} \tag{1} \end{align*}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-}+$ Third mark (pH is unchanged because added OH^{-} is removed) change in concentration of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-}$and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}$ is small / ratio [salt]/[acid] hardly changes		3

(Total for Question 19 = 15 marks)

Section C

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 0 a (i)}$	$\Delta \mathrm{S}_{\text {system }}=240.0-102.5-210.7$ $=-73.2 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} /-0.0732 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$		2
	ALLOW $-73 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ Correct data Final answer with sign and units (in any order) TE on incorrect data		

Question Number	Acceptable Answers	Reject	Mark
20a(ii)	First check final answer $+118.1 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} /+0.1181 \mathrm{~kJ}$ $\mathrm{mol}^{-1} \mathrm{~K}^{-1}$ ALLOW $\begin{equation*} +120 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \tag{2} \end{equation*}$ OR $\Delta \mathrm{S}_{\text {surroundings }}=-(-57 \times 1000 / 298)$ $=(+) 191.3\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$ ALLOW $\begin{equation*} (+) 191\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) \tag{1} \end{equation*}$ $\begin{align*} & \Delta \mathrm{S}_{\text {total }}=(-73.2+191.3)=+118.1 \mathrm{~J} \\ & \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \tag{1} \end{align*}$ Use of $-73+191$ gives +118		2

Question Number	Acceptable Answers	Reject	Mark	
$\mathbf{2 0 a (i i i)}$	(it ceases when) $\Delta \mathrm{S}_{\text {total }}=0$	(1)		2
	(this is when $\mathrm{T} \Delta \mathrm{S}_{\text {system }}=\Delta \mathrm{H}$)			
	$\mathrm{T}=\frac{\Delta \mathrm{H}}{\Delta \mathrm{S}_{\text {system }}}=\frac{57 \times 1000}{73.2}$			
	$=778.69 / 778.7 / 779 / 780(\mathrm{~K})$		778	
	Use of 73 gives $780.1 / 780(\mathrm{~K})$	(1)	$-780.1-780$	

Question Number	Acceptable Answers	Reject	Mark		
$\mathbf{2 0 b}$	(Even though thermodynamically feasible) (The reaction is very slow because) the activation energy is high/ there is an activation energy barrier	Reaction is not spontaneous	1		
Makes reaction					
faster					
Catalyst lowers					
activation energy				\quad	Provides an
:---					
alternative route					
with a lower					
activation energy	\quad.				

(Total for Question $20=\mathbf{7}$ marks)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 a}$	Q: C=O (1750-1735 ester saturated) and R: C-O (1250-1230 ethanoate) (1)	C=O aldehyde	2
	Functional group: ester/ ethanoate	Just	
		(1) O 1 C=O	

Question Number	Acceptable Answers	Reject	Mark
21b(i)	(\mathbf{Y} reacts with sodium carbonate to give CO_{2}) so is a (carboxylic) acid (1) $M_{r}=60$ from mass spectrum IGNORE Fragmentation $\mathrm{CH}_{3} \mathrm{COOH} /$ ethanoic acid	$\mathrm{CH}_{3} \mathrm{COOH}^{+}$	3

Question Number	Acceptable Answers	Reject	Mark
21b(ii)	(Reacts with sodium to give H_{2}) so is an alcohol and cannot be oxidized so a tertiary alcohol ALLOW No colour change with (acidified) dichromate to justify tertiary alcohol $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$ ALLOW Displayed or skeletal formula 2-methylpropan-2-ol Structural, displayed or skeletal formula shown in equation $\begin{aligned} & \left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}+\mathrm{Na} \rightarrow \quad\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CO}^{(-)} \mathrm{Na}^{(+)} \\ & +1 / 2 \mathrm{H}_{2} \end{aligned}$ ALLOW $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}+\mathrm{Na} \rightarrow \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}^{(-)} \mathrm{Na}^{(+)}+1 / 2$ H_{2} Multiples TE if primary or secondary alcohol given for structure		3

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 b}(\mathrm{iii})$	Displayed formula of $\left(\mathrm{CH}_{3} \mathrm{COOC}\left(\mathrm{CH}_{3}\right)_{3}\right)$		
			1
	ALLOW		
Alkyl groups not fully displayed			
TE on primary or secondary alcohol in			
b(ii)			

Question Number	Acceptable Answers	Reject	Mark
21b(iv)	No marks for this part can be awarded unless a structure is shown in either (iii) or (iv) Two peaks because there are 2 different hydrogen environments Relative area 3:1/ 9:3/1:3/3:9 (because there are 9 H in one, 3 H in the other) (1) Both singlets because there are no H atoms on adjacent C / by application of n +1 rule ALLOW TE for ester formed from ethanoic aid and butan-1-ol / butan-2-ol ONLY For butan-1-ol 5 peaks 3:2:2:2:3 Singlet, triplet, pentet/quintet, sextet, triplet by application of $n+1$ rule For butan-2-ol 5 peaks 3:3:1:2:3 Singlet, doublet, sextet, pentet/quintet, triplet by application of $n+1$ rule		3

