Pearson Edexcel

Mark Scheme (Results)

Summer 2019

Pearson International Advanced Subsidiary Level
In Chemistry (WCH03) Paper 01 Chemistry Laboratory Skills I

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2019
Publications Code WCH03_01_1906_MS
All the material in this publication is copyright
© Pearson Education Ltd 2019

General Marking Guidance

- \quad All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Question Number	Acceptable Answers	Reject	Mark
1(a)(i)	IGNORE State symbols, even if incorrect Cation Potassium / K ${ }^{+}$ Gas Oxygen / O2 Anion Nitrate ((V)) / $\mathrm{NO}_{3}{ }^{-}$ ALLOW Other anions that decompose on heating to give oxygen e.g. $\mathrm{ClO}_{3}^{-} / \mathrm{BrO}_{3}^{-} / \mathrm{IO}_{3}^{-} / \mathrm{ClO}_{4}^{-} / \mathrm{MnO}_{4}^{-}$	K 0 Nitrate(III) / nitrite / $\mathrm{NO}_{2}{ }^{-}$ Just 'oxide'	(3)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (a) (i i)}$	$2 \mathrm{KNO}_{3} \rightarrow 2 \mathrm{KNO}_{2}+\mathrm{O}_{2}$	Equation for decomposition of oxide / peroxide / superoxide	(1)
TE on cation in (a)(i)			
TE on anion if it decomposes on heating to give oxygen e.g. $2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}$ ALLOW Multiples or half IGNORE State symbols, even if incorrect			

Question Number	Acceptable Answers	Reject	Mark
1(b)(i)	IGNORE State symbols, even if incorrect Cation Strontium / Sr ${ }^{2+}$ Precipitate Strontium sulfate / SrSO_{4} TE on calcium or barium cation in Test $\mathbf{3}$ Anion Bromide / Br^{-} IGNORE Bromine (ion)	Sr / incorrect charge Magnesium sulfate Br / incorrect charge	(3)

Question Number	Acceptable Answers	Reject	Mark
1(b)(ii)	$\mathrm{Sr}^{2+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq}) \rightarrow \mathrm{SrSO}_{4}(\mathrm{~s})$ First mark Correct formulae and balancing TE on Group $\mathbf{2}$ cation in Test $\mathbf{3}$ or Test $\mathbf{4}$ Second mark State symbols TE on calcium or barium in Test $\mathbf{3}$ or Test 4 Conditional on correct or nearly correct species $\begin{equation*} \text { e.g. } \mathrm{Sr}^{+}(\mathrm{aq})+\mathrm{SO}_{4}^{-}(\mathrm{aq}) \rightarrow \mathrm{SrSO}_{4}(\mathrm{~s}) \tag{1} \end{equation*}$		(2)

Question Number	Acceptable Answers	Reject	Mark
1(b)(iii)	Reagent Add dilute ammonia ALLOW $\mathrm{NH}_{3}(\mathrm{aq})$ Observations - conditional on correct reagent The precipitate / solid / it will dissolve if it contains chloride ions / Cl^{-}/ is AgCl and either will not dissolve / no change if it contains bromide ions / $\mathrm{Br}^{-} /$is AgBr or bromide ions will only dissolve in concentrated ammonia ALLOW The precipitate / solid / it will only dissolve if it contains chloride ions / Cl^{-} The white precipitate will dissolve and the cream precipitate will not Reference to chlorine / bromine ions IGNORE Both precipitates / solids dissolve in concentrated ammonia Reference to iodide ions Just 'chloride ions dissolve but bromide ions do not' ALLOW alternative method: Concentrated sulfuric acid/ $\mathrm{H}_{2} \mathrm{SO}_{4}$ Steamy fumes with chloride and red brown fumes with bromide	Just NH_{3}	(2)

(Total for Question 1 = 11 marks)

Question Number	Acceptable Answers	Reject	Mark
2(a)(i)	Phosphorus(V) chloride / phosphorus pentachloride / PCl_{5}	Reference to aqueous / (aq)	(1)
	ALLOW Phosphorus chloride if PCl_{5} is also given ALLOW Thionyl chloride / sulfuryl chloride / sulfonyl chloride / $\mathrm{SOCl}_{2} / \mathrm{SO}_{2} \mathrm{Cl}_{2}$	Phosphorus(III) chloride / phosphorus trichloride / PCl_{3}	

Question Number	Acceptable Answers	Reject	Mark
2(a)(ii)	Hydrogen chloride / HCl / HCl(g)		(1)
	ALLOW $\mathrm{HCl}(\mathrm{aq}) /$ hydrochloric acid		

Question Number	Acceptable Answers	Reject	Mark		
2(a)(iii)	Aqueous bromine / bromine water / $\mathrm{Br}_{2}(\mathrm{aq}) /$ bromine in an organic solvent ALLOW Bromine / $\mathrm{Br}_{2} / \mathrm{Br}_{2}(\mathrm{l})$ Bromine solution	HBr		$⿻$	(1)
:---					

Question Number	Acceptable Answers	Reject	Mark
2(b)	ALLOW Any combination of structural and displayed formulae Charge anywhere on the ion or outside of brackets e.g. $\left[\mathrm{CH}_{3}\right]^{+}$ Comment Ignore additional bond e.g. $-\mathrm{CH}_{3}^{+}$	Missing or incorrect charge once only	(2)
Ion giving peak at $\mathbf{m} / \mathbf{e}=\mathbf{1 5}$ CH_{3}^{+} Ion giving peak at $\mathbf{m} / \mathbf{e}=\mathbf{3 1}$ $\mathrm{CH}_{2} \mathrm{OH}^{+}$	(1)	$\mathrm{CH}_{3} \mathrm{O}^{+}$	

Question Number	Acceptable Answers	Reject	Mark
2(c)	ALLOW Any combination of structural and displayed formulae / skeletal formula IGNORE Connectivity of OH to C through vertical bond	structure of	

Question Number	Acceptable Answers	Reject	Mark
2(d)	D will have a characteristic peak / absorption for C=C / alkene / double bond and cyclobutanol will not OR Only D will have a characteristic peak / absorption for C=C / alkene / double bond OR Only D will have a characteristic peak / absorption for H-C=C	(1)	
ALLOW Cyclobutanol will not have a characteristic peak / absorption for C=C / alkene / double bond			
IGNORE Reference to OH peak / fingerprint region			

(Total for Question 2 = 7 marks)

Question Number	Acceptable Answers	Reject	Mark
3(a)	Measuring cylinder ALLOW Measurement on the side of the beaker Pipette	Burette / volumetric flask / weighing	(1)

Question Number	Acceptable Answers	Reject	Mark
3(b)	The copper / filter paper was still damp / wet OR The copper / filter paper was not (completely) dry OR The mass of the filter paper was included / not subtracted ALLOW Copper may become oxidised IGNORE Reference to other experimental errors	(1)	

Question Number	Acceptable Answers	Reject	Mark
3(c)	 First mark Axes with linear scale and points covering at least half the grid ALLOW Mass of copper on x axis Second mark Both axes labelled, including units and 'mass' IGNORE Produced / used, even if the wrong way around Third mark Points plotted correctly (± 1 small square) and best fit straight line through the 4 accurate points IGNORE Absence of anomalous point Additional point at 0.56 g of iron Line not extended to origin		(3)

Question Number	Acceptable Answers	Reject	Mark
3(d)	0.62 (g)		(1)
	ALLOW Value from graph (± 1 small square) $0.6(\mathrm{~g})$ for $0.60(\mathrm{~g})$		

Question Number	Acceptable Answers	Reject	Mark
3(e)	Correct working to show that mole ratio Fe: Cu = 1: 1/1: 0.96875 e.g. 0.01 mol iron produces 0.01 / 0.0096875 mol copper OR 56 g of iron produces 62 g copper TE on mass in (d) ALLOW Working from any pair of masses from graph or from table in question paper So equation is $\mathrm{Fe}+\mathrm{CuSO}_{4} \rightarrow \mathrm{FeSO}_{4}+\mathrm{Cu}$ ALLOW $\mathrm{Fe}+\mathrm{Cu}^{2+} \rightarrow \mathrm{Fe}^{2+}+\mathrm{Cu}$ ALLOW Multiples IGNORE State symbols, even if incorrect		(2)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 (f)}$	Masses (of copper and iron) are (only) given to 2 significant figures ALLOW Student data / measurement is given to 2 significant figures OR Only need ratio of 1:1 or 1:1.5 so only approximate molar mass / Ar are needed ALLOW Numbers of moles / mole ratio is rounded to 1 significant figure / whole number (in the balanced equation) OR If the product was FeSO4 then mass ratio of Cu to Fe 1.14 / 1.13:1 but for Fe2(SO4)3 then mass ratio of Cu to Fe $=1: 1.7 / 1.75$ so 2 SF gives sufficiently precise result to discriminate IGNORE Just 'numbers/ values are rounded to the nearest whole number' Reference to isotopes		(1)

Question Number	Acceptable Answers	Reject	Mark
3(g)	Copper(II) sulfate is in excess / the extra copper(II) sulfate will not react OR The mass of iron is the limiting quantity / factor IGNORE The mass of copper is proportional to / depends on the mass of iron The amount of copper is the same as the amount of iron / the mol ratio of copper : iron = 1:1 References to rate of reaction Just 'the mass of iron does not change'	Copper is in excess	(1)

(Total for Question 3 = 10 marks)

Question Number	Acceptable Answers	Reject	Mark
4(a)	150 (s / seconds / sec)	$3 \mathrm{~min} /$ minutes	(1)
	ALLOW $144-150$ (s / seconds / sec) $21 / 2 \mathrm{~min} /$ minutes $2 \mathrm{~min} /$ minutes and $30 \mathrm{~s} / \mathrm{seconds} / \mathrm{sec}$		

Question Number	Acceptable Answers	Reject	Mark
4(b)	 Tangent Tangent drawn at t=0 This must touch the curve for at least the first 18 s (3 small squares horizontally) and extend to at least 60 s Gradient - conditional on a tangent / line drawn Gradient $=\underline{100}=0.833$ 120 TE on tangent / line drawn, even if not at $\mathrm{t}=0$ IGNORE SF including 1SF Units - stand alone mark $\mathrm{cm}^{3} \mathrm{~s}^{-1} / \mathrm{cm}^{3} / \mathrm{s} / \frac{\mathrm{cm}^{3}}{\mathrm{~s}}$	Incorrect rounding	(3)

Question Number	Acceptable Answers	Reject	Mark
4(c)(i)	Any two from: (Same) volume (of hydrochloric acid) (Same) concentration (of hydrochloric acid) ALLOW (Same) amount / moles of (hydrochloric) acid (Same) dilution (of hydrochloric acid) Temperature IGNORE Mass of marble chips / size of marble chips / time / pressure / mass of acid / pH of acid		(2)

Question Number	Acceptable Answers	Reject	Mark
4(c)(iii)	The rate of reaction increases because) small marble chips have a greater surface (area to volume ratio) ALLOW More exposed particles of $\mathrm{CaCO}_{3} \quad$ (1) So the frequency / rate of collisions (between the acid particles and the marble) increases only rate for M1	(2)	Rlower activation energy changing
ALLOW Just 'more collisions' IGNORE Reference to energy change	(1)		

Question Number	Acceptable Answers	Reject	Mark
4(d)	Some gas / carbon dioxide escapes before the stopper is replaced on the conical flask OR Some gas is soluble / dissolves in / reacts with the solution / hydrochloric acid / water IGNORE Just 'gas / carbon dioxide escapes'	Gas / sarbon dioxide evaporates	(1)

(Total for Question 4 = 11 marks)

Question Number	Acceptable Answers	Reject	Mark
5(a)(i)	The reaction is exothermic / releases heat (energy)	Explosive	(1)
IGNORE The reaction is violent / vigorous Reagents are flammable /volatile To stop spitting / flash boiling To prevent side reactions			

Question Number	Acceptable Answers	Reject	Mark
5(a)(ii)	To prevent the loss / escape of any volatile substances / volatile reactants / volatile products / organic compounds / named organic compound	(1)	
	OR To make sure that vapours condense		
ALLOW To prevent vapour escaping To ensure the reactants and products remain in the flask So the reaction / oxidation goes to completion So all the propan-1-ol is oxidised So propanoic acid forms instead of propanal			
IGNORE To prevent gas escaping Just 'to prevent loss of reactants / products' Just 'reactants / products are volatile' Because propan-1-ol / alcohol is flammable			

Question Number	Acceptable Answers	Reject	Mark
5(a)(iii)	First mark Round bottom flask and heat ALLOW Pear-shaped flask Bunsen burner / electric heater / just an arrow Second mark Reaction mixture and anti-bumping granules ALLOW Reaction mixture not labelled provided a liquid line is shown in the flask / other labels for reaction mixture e.g. propan-1-ol , propanoic acid Anti-bumping granules drawn but not labelled (1) Third mark Vertical condenser with jacket Fourth mark Water in and out of condenser labelled	No join between flask and condenser Obvious gap between condenser and flask Water bath / ice bath	(4)

Question Number	Acceptable Answers	Reject	Mark
5(a)(iv)	Propan-1-ol / $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$	Sulfuric acid	(1)
	ALLOW Propanol Propanal $/ \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$ Propyl propanoate $/ \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ Any combination of structural and displayed formulae / skeletal formula IGNORE Water / propanoic acid	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COH}$ propanone	

Question Number	Acceptable Answers	Reject	Mark
5(b)(i)	Correct answer, with or without working, scores (3) Amount (mol) of NaOH used $\begin{equation*} =\frac{25.0 \times 0.102}{1000}=0.00255 / 2.55 \times 10^{-3} \tag{1} \end{equation*}$ (Amount (mol) of propanoic acid $\left.=0.00255 / 2.55 \times 10^{-3}\right)$ Concentration of propanoic acid $=\frac{0.00255 \times 1000}{18.60}=0.137097\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ TE on amount (mol) NaOH Concentration of propanoic acid $\begin{aligned} & =0.137097 \times 74 \\ & =10.145\left(\mathrm{~g} \mathrm{dm}^{-3}\right) \end{aligned}$ TE on concentration in $\mathrm{mol} \mathrm{dm}^{-3}$ Alternative method for M2 and M3 Mass of propanoic acid (in $18.60 \mathrm{~cm}^{3}$) $=0.00255 \times 74=0.1887(\mathrm{~g})$ TE on amount (mol) NaOH Concentration of propanoic acid $=\frac{0.1887 \times 1000}{18.60}=10.145\left(\mathrm{~g} \mathrm{dm}^{-3}\right)$ TE on mass in $18.60 \mathrm{~cm}^{3}$ ALLOW Answers from earlier correct rounding to 2 or more SF e.g. $0.137 \mathrm{~mol} \mathrm{dm}^{-3}$ gives $10.138 \mathrm{~g} \mathrm{dm}^{-3}$ IGNORE SF except 1SF		(3)

Question Number	Acceptable Answers	Reject	Mark
5(b)(ii)	Correct answer, with or without working, scores (1) (percentage uncertainty) $=\frac{0.06}{25.0} \times 100=(\pm) 0.24(\%)$	(1)	

(Total for Question 5 = 11 marks)
Total for Paper = 50 marks

