Mark Scheme (Results)

January 2016

Pearson Edexcel International
Advanced Level in Chemistry
(WCH02) Paper 01 - Application of
Core Principles of Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere
Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2016
Publications Code IA043125*
All the material in this publication is copyright
© Pearson Education Ltd 2016

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.
Full marks will be awarded if the candidate has demonstrated the above abilities. Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A

Question Number	Correct Answer	Mark
$\mathbf{1}$	B	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{2}$	D	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{3}$	A	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{4}$	B	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{5}$	C	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{6}$	D	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{7}$	D	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{8}$	C	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{9}$	B	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 0}$	A	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 1}$	B	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 2}$	A	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 3}$	A	$\mathbf{1}$

Question	Correct Answer	Mark
Number		
$\mathbf{1 4}$	D	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 5}$	B	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 6}$	C	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 7}$	C	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 8}$	D	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 9}$	D	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{2 0}$	B	$\mathbf{1}$

(Total for Section A=20 marks)

Section B

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1}$ (b)	(From) Orange OR brown ALLOW Shades of orange or yellow or brown including red-brown/reddish-brown OR 'red' if used as a 'qualifier' for a correct colour (To) Colourless	Just 'red' for the initial colour	$\mathbf{1}$
	IGNORE 'Clear' Both colours are needed for the mark		

Question Number	Acceptable Answers	Reject	Mark
21 (c)(i)	First mark - M1: Curly arrow from anywhere* on the OH^{-}ion to C atom of $\mathrm{C}-\mathrm{Br}$ bond and dipole shown on $\mathrm{C}-\mathrm{Br}$ bond, $\mathrm{C}^{\delta+}$ and $\mathrm{Br}^{\delta-}$ IGNORE δ - on OH^{-}ion Second mark - M2: Curly arrow from the $\mathrm{C}-\mathrm{Br}$ bond to the Br atom Third mark - M3: Br^{-}as the co-product IGNORE intermediates or transition states even if incorrect	*If lone pair of \mathbf{e}^{-}is shown on the \mathbf{H} of the OH^{-}ion, no M1 Just ' Br^{\prime} $\mathrm{NaBr} /$ $\mathrm{Na}^{+} \mathrm{Br}^{-} /$ HBr	3

Question Number	Acceptable Answers	Reject	Mark
21 (c)(ii)	(Type of reaction) substitution IGNORE 'hydrolysis' (Mechanism) nucleophilic ALLOW These words in either order or on one line Just $\mathrm{S}_{\mathrm{N}} 1$ or $\mathrm{S}_{\mathrm{N}} 2$ scores 1 (Otherwise IGNORE $\mathrm{S}_{\mathrm{N}} 1$ or $\mathrm{S}_{\mathrm{N}} 2$ if given with correct answer(s)) NOTE Spelling does not have to be 100% accurate, so long as the meaning is clear		2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1}$ (c)(iii)	Heterolytic (fission)	Homolytic	$\mathbf{1}$
NOTE Spelling does not have to be 100% accurate, so long as the meaning is clear			

Question Number	Acceptable Answers	Reject	Mark
22 (a)	ALLOW CN for C \equiv N throughout IGNORE 'connectivity' to the C $\equiv \mathrm{N} / \mathrm{CN}$ group First mark - M1: Two " n " in the equation and a correct formula (molecular or structural or displayed) for propenenitrile on LHS of the equation LHS " n " must be to left of the monomer RHS " n " must be a subscript IGNORE Any square or round brackets around monomer on LHS Second mark - M2: One correct displayed repeat unit (with or without a bracket or " n " shown in the equation) Third mark - M3: Continuation bond at each end of the repeat unit (with or without a bracket or " n " shown in the equation) NOTE M3 is awarded for the two continuation bonds, even if the repeat unit given is incorrect Polymer containing a $\mathrm{C}=\mathrm{C}$ scores max (1) Additional comment Mark the three scoring points independently	No M2 mark if more than one repeat unit shown	3

Question Number	Acceptable Answers	Reject	Mark
22 (b)	(It is an) addition reaction OR An addition polymer is made OR All the reactants are made into the desired / required product OR Only one product (is made) OR No waste products / no by-products ALLOW No 'side' products	Just 'all the product is useful' Just 'all the reactants become products' 'No product wasted'	1

Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & 22 \\ & *(c)(i) \end{aligned}$	First mark - M1: (Position of equilibrium shifts/'favours') to the left OR to the reactants OR to the backward reaction/direction OR to the reverse reaction/direction OR towards $\mathrm{C}_{3} \mathrm{H}_{6} / \mathrm{NH}_{3} / \mathrm{O}_{2}$ ALLOW decreases yield of products / decreases yield of $\mathrm{CH}_{2} \mathrm{CHCN} /$ decreases yield of $\mathrm{H}_{2} \mathrm{O}$ Second mark - M2: This mark is dependent on the correct change in THE position of equilibrium (i.e. (0) overall for question if states that eq'm shifts to the RIGHT) (Forward) reaction is exothermic OR (Forward) reaction gives out heat OR Backward reaction is endothermic / takes in heat OR Reverse reaction is endothermic / takes in heat IGNORE References to just "decreasing the temperature" / "opposes the increase in temperature" Additional comment JUST a statement that it "moves in / favours the endothermic direction" can get M1 ONLY IF M2 has already been awarded (as it is then clear that the candidate realises that from right to left is the endothermic direction).		2

Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & 22 \\ & \text { *(c)(ii) } \end{aligned}$	First mark - M1: (Position of equilibrium shifts/'favours') to the left OR to the reactants OR to the backward reaction/direction OR to the reverse reaction/direction OR towards $\mathrm{C}_{3} \mathrm{H}_{6} / \mathrm{NH}_{3} / \mathrm{O}_{2}$ ALLOW decreases yield of products / decreases yield of $\mathrm{CH}_{2} \mathrm{CHCN} /$ decreases yield of $\mathrm{H}_{2} \mathrm{O}$ Second mark - M2: This mark is dependent on the correct change in THE position of equilibrium (i.e. (0) overall for question if states that eq'm shifts to the RIGHT) Right-hand side has more moles/molecules (of gas) OR Products have more moles/molecules (of gas) OR Left-hand side has fewer moles/molecules (of gas) OR Reactants have fewer moles/molecules (of gas) NOTE: 2nd mark awarded if mentions: $31 / 2$ moles/molecules (of gas) on LHS and 4 moles/molecules (of gas) on RHS	References to ATOMS/PARTICLES, if chooses to refer to these, (instead of molecules) no 2nd mark	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 2 (d) (i)}$	(y-axis:) Fraction of molecules / number of molecules ALLOW Proportion of molecules ALLOW 'particles' instead of molecules for the label on the y-axis	'atoms' instead of molecules/particles	$\mathbf{1}$
and	(x-axis:) Energy / E / kinetic energy NOTE: BOTH graphs' axes (on p14 and p15 of script) need to be labelled correctly for this mark		

Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & * 22 \\ & (\mathrm{~d})(\mathrm{ii}) \end{aligned}$	First mark - M1: Correct drawing of Maxwell-Boltzmann distribution at T_{2} clearly identified NOTE As long as it is clear which curve the candidate has drawn, if it is correctly drawn award this mark, even if their curve is not actually labelled " T_{2} " NOTE Peak of candidate's curve (at the higher temperature) should be clearly lower and to the right of that at the lower temperature Second mark - M2: Suitable E_{a} shown on graph Third mark - M3: (At higher temperature) more molecules/more collisions / more particles have energy greater than the activation energy NOTE: Must refer to activation energy / E_{a} for M3 IGNORE 'more frequent collisions' Only M1 can be awarded if two E_{a} values drawn on graph for this part	E_{a} shown at peak or to the left of peak "More atoms"	3

Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & \hline 22 \\ & *(d)(i i i) \end{aligned}$	First mark - M1: E_{a} for the catalysed reaction shown to the left of E_{a} for the un-catalysed reaction NOTE Do not penalise again the actual position of either E_{a} if M2 was not awarded in Q22(d)(ii) for the same reason Second mark - M2: EITHER (With catalyst) more molecules / more collisions / more particles have energy greater than the (new, lower) activation energy OR Diagram labelled as shown below NOTE If a shaded area is shown between the two E_{a} lines, even if it is unlabelled, award M2 NOTE ALLOW alternatives for M2 such as "More molecules have enough energy to react (with the catalyst)" OR "More molecules are able to react at lower energies (with the catalyst)" [Unlike in Q22(d)(i), E_{a} doesn't HAVE to be mentioned.] IGNORE Just a statement that "a catalyst provides an alternative reaction route/pathway of lower activation energy"	Two curves shown (no M1) "More atoms"	2

(Total for Question 22 = 14 marks)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 3 (a) (i)}$	Any value or range of values from pH 8 to 13 (inclusive)	Just greater / > than any value	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\begin{align*} & 23 \tag{1}\\ & (\mathrm{a})(\mathrm{ii}) \end{align*}$	$\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{CaCO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ M1 - All four species are correct M2 - State symbols all correct M2 can only be awarded for the correct state symbols if M1 has already been awarded OR for a 'near-miss' equation with species almost correct		2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 3}$ (b)(i)	Three / 3 (moles of ions)		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 3}$ (b)(ii)	Ten / 10 (moles of electrons)		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
23 (d)(i)	$\begin{aligned} & 2 \mathrm{SO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \\ & 2 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \end{aligned}$ ALLOW Multiples M1 - Species and balancing M2 - All state symbols correct M2 can only be awarded for the correct state symbols if M1 has already been awarded OR for a 'nearmiss' equation with the species almost correct		2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 3}$ (d)(ii)	CaO is basic / is a base / is a metal oxide OR		1
	CaO neutralizes (acidic) $\mathrm{SO}_{2} / \mathrm{H}_{2} \mathrm{SO}_{4}$		
	OR CaO reacts with a non-metal oxide $\left(\mathrm{SO}_{2}\right)$		
OR Basic oxides react with acidic gases ALLOW Alkaline for basic/ alkali for base			
IGNORE References to forming a salt / formation of calcium sulfate			
References to the large surface area of powder / effect on rate of reaction			

Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & 23 \\ & (\mathrm{~d})(\mathrm{iii}) \end{aligned}$	NOTE: Can only award scoring point for the environmental problem if it is linked to the correct substance Substance mark (M1) stand-alone Carbon dioxide/ CO_{2} with Global warming OR Greenhouse effect ACCEPT as an alternative a description of the above phenomenon IGNORE acid rain for CO_{2} OR Carbon particulates / soot with Breathing difficulties / breathing disorders / carcinogenic / 'blocking out' sky / blackening of buildings / covering buildings ALLOW Nitrogen dioxide/ $\mathrm{NO}_{2} \mathrm{OR}$ nitrogen monoxide/ NO with Destruction of ozone layer/breathing problems IGNORE acid rain for NO_{2} ALLOW Carbon monoxide/ CO with (Highly) toxic (gas) / poisonous / 'lethal' (gas)	$\mathrm{SO}_{2} / \mathrm{SO}_{3} / \mathrm{H}_{2} \mathrm{SO}_{3} / \mathrm{H}_{2} \mathrm{SO}_{4}$ scores (0) for question as already mentioned earlier 2nd mark for 'ozone depletion' IF this is linked to CO_{2}	2

Question Number	Acceptable Answers	Reject	Mark
24 (a)(i)	FIRST, CHECK THE FINAL ANSWER IF answer $\mathrm{IO}_{3}^{-}+6 \mathrm{H}^{+}+5 \mathrm{I}^{-} \rightarrow 3 \mathrm{I}_{2}+3 \mathrm{H}_{2} \mathrm{O}$ (ALLOW multiples) then award (2) marks, with or without any working OTHERWISE First mark: Any evidence of correctly multiplying the halfequations in order to cancel electrons (e.g. second equation $\times 5$ OR first equation $\times 2$ and second equation $\times 10$) Second mark: For correctly balanced equation overall $\mathrm{IO}_{3}^{-}+6 \mathrm{H}^{+}+5 \mathrm{I}^{-} \rightarrow 3 \mathrm{I}_{2}+3 \mathrm{H}_{2} \mathrm{O}$ OR $\begin{equation*} 2 \mathrm{IO}_{3}^{-}+12 \mathrm{H}^{+}+10 \mathrm{I}^{-} \rightarrow 6 \mathrm{I}_{2}+6 \mathrm{H}_{2} \mathrm{O} \tag{1} \end{equation*}$ IGNORE State symbols, even if incorrect	NO 2nd mark if e^{-}un-cancelled on LHS and RHS in balanced eqtn	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 4}$ (a)(ii)	$\mathrm{IO}_{3}^{-} / \mathrm{NaIO}_{3}$ and gains electrons (from the iodide ions) ALLOW 'electron gain' (singular)	(IGNORE References to iodate(V) or sodium iodate NOTE: IGNORE Just correct changes in oxidation number, as answer requires reference to gain of electrons	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 4}(\mathbf{b})(\mathbf{i)}$	Iodine $/ \mathrm{I}_{2}$	Just I^{\prime}	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & 24 \\ & \text { (b)(ii) } \end{aligned}$	$\mathrm{H}_{2} \mathrm{SO}_{4}+6 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightarrow \mathrm{S}+4 \mathrm{H}_{2} \mathrm{O}$ OR $\mathrm{SO}_{4}{ }^{2-}+8 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightarrow \mathrm{S}+4 \mathrm{H}_{2} \mathrm{O}$ OR $\begin{equation*} 8 \mathrm{SO}_{4}{ }^{2-}+64 \mathrm{H}^{+}+48 \mathrm{e}^{-} \rightarrow \mathrm{S}_{8}+32 \mathrm{H}_{2} \mathrm{O} \tag{2} \end{equation*}$ IGNORE State symbols, even if incorrect First mark - M1: All species correct Second mark - M2: Balancing M2 can only be awarded if the correct species mark (M1) has been awarded ACCEPT Multiples	S_{2} or S_{4} for sulfur e^{-}on wrong side (no M1)	2

Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & 24 \\ & (\mathrm{~b})(\mathrm{iii}) \end{aligned}$	M1 - (Identity of \mathbf{X}) $\mathrm{H}_{2} \mathrm{~S}$ / hydrogen sulfide / hydrogen sulphide M2 - (this is a stand-alone mark) (Oxidation number of S in sulfuric acid) +6 ALLOW 6 or " $6+$ " M3 - (Oxidation number of S in \mathbf{X}) -2 ALLOW 2- No TE on incorrect \mathbf{X}	+4	3

Question Number	Acceptable Answers	Reject	Mark
24 (c)(i)	FIRST CHECK THE ANSWER ON ANSWER LINE, IF answer $=183(\mu \mathrm{~g})$, N.B. must be 3 sf, then award (2) marks, with or without any working OTHERWISE look for: 1st mark - M1 EITHER (Moles of I^{-}) $=140 \times 10^{-6} \div 126.9$ OR (Moles of I^{-}) $=140 \times 10^{-6} \div 127$ OR (Moles of I^{-}) $=1.1(0) \times 10^{-6}(\mathrm{~mol})$ ALSO ALLOW $140 \div 126.9$ OR $140 \div 127$ for M1 2nd mark - M2 (Mass of KI) $=\mathrm{mol}$ of $\mathrm{I}^{-} \times 166 \div 10^{-6}$ and $\mathbf{3}$ s.f. [NOTE: Expected answer: $\left[\left(1.1(0) \times 10^{-6} / 10^{-6}\right) \times 166\right]$ $=183(\mu \mathrm{~g}) \text { to } \mathbf{3} \mathbf{~ s f}$ 2nd mark is CQ on moles of I^{-} calculated ALLOW $140 \times 166 \div 126.9 \text { for M2 }$ OR $140 \times 166 \div 127 \text { for M2 }$ ALLOW M_{r} for KI as 166 or 166.1 or 165.9		2

Question Number	Acceptable Answers	Reject	Mark
24 (c)(ii)	Any ONE of: (Morally) wrong to put additives in food supplies; People should be able to choose if I^{-}is added to their food; Food / tap water already has sufficient I^{-}(from other sources); Other foodstuffs contain I^{-}; Excess K^{+}(ions) harmful; Excess I-(ions) harmful; Any reference to radioactivity; Allergies/intolerance (to I^{-}); Raises blood pressure; Any reference to thyroid issues NOTE ALLOW 'dangerous' for 'harmful' IGNORE Any references to cost	KI/I' 'toxic' or 'poisonous'; References to just " K " or " I " or " I_{2} "; "KI reacts with (stomach) acid"; (KI) difficult to obtain; (KI) difficult to prepare; (KI) difficult to store; (KI) not readily available; (KI) strong reducing agent; (KI) bad taste	1

Question Number	Acceptable Answers	Reject	Mark
24 (d)(i)	First mark (M1) ICl has permanent dipole (-permanent dipole) forces OR ICI has dipole-dipole forces IGNORE Just I-Cl bond is polar or just ICl is a polar molecule Second mark (M2) Cl_{2} has London forces / Cl_{2} has van der Waals' forces / Cl_{2} has dispersion forces / Cl_{2} has INDUCED-dipole forces/ temporary dipole forces Third mark (M3) Any suggestion that the intermolecular forces / any named intermolecular forces / any 'interactions' between molecules are stronger in ICI (than in Cl_{2}) / need more (heat) energy to overcome forces in ICl OR Mentions that ICI has BOTH London AND permanent dipole forces Fourth mark (M4) EITHER ICI has stronger London forces / stronger van der Waals' forces / stronger dispersion forces (than Cl_{2}) OR ICl has more electrons (per molecule than Cl_{2}) / ICl larger molecule (than Cl_{2})	Reference to ionic bonds (no M3) Reference to/implication of the breaking of ionic bonds or covalent bonds or hydrogen bonds or ambiguity as to what interactions are being broken (no M3)	4

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 4}$ (d)(ii)	2 lone pairs on the iodine Rest of molecule correct (i.e. $3 \mathrm{I}-\mathrm{Cl}$ bond pairs and 3 lone pairs on each Cl atom)	(1)	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 4 (e) (\mathbf { i })}$	$\mathrm{Cl}_{2}+2 \mathrm{I}^{-} \rightarrow 2 \mathrm{Cl}^{-}+\mathrm{I}_{2}$ ALLOW multiples IGNORE State symbols, even if incorrect Full equation also given	If K^{+}ions are left in the equation	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & * 24 \\ & (e)(i i) \end{aligned}$	(So from 0.66 mol NaI)		3
	$0.33 \mathrm{~mol}_{2}$ formed	TE on incorrect moles of I_{2} or incorrect moles of Br_{2}	
	(So) $0.17 \mathrm{~mol} \mathrm{Br}_{2}$ formed		
	NOTE: $0.33 \mathrm{~mol}_{2}$ scores (1), with or without working		
	$\mathbf{0 . 1 7} \mathrm{mol}_{\mathrm{Br}}^{2}$ scores (1), with or without working		
	M3-[Justification] Stand alone		
	EITHER		
	I^{-}has greater reducing power (than Br^{-})	Iodine/ I_{2} has greater reducing power than bromine/ Br_{2}	
	OR		
	NaI has greater reducing power (than NaBr)		
	OR		
	Reducing power (of the halide ions) increases down the group		
	I^{-}more easily oxidised (than Br^{-})		

(Total for Question 24 = 22 marks)
TOTAL FOR PAPER = 80 marks

