P Pearson Edexcel

Mark Scheme (Results)

Summer 2018

Pearson Edexcel International GCSE In Further Pure Mathematics (4PMO) Paper 02

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2018
Publications Code 4PM0_02_1806_MS
All the material in this publication is copyright
© Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
o M marks: method marks
o A marks: accuracy marks
o B marks: unconditional accuracy marks (independent of M marks)
- Abbreviations
o cao - correct answer only
o ft - follow through
o isw - ignore subsequent working
o SC - special case
o oe - or equivalent (and appropriate)
o dep-dependent
o indep - independent
o eeoo - each error or omission

- No working

If no working is shown then correct answers may score full marks
If no working is shown then incorrect (even though nearly correct) answers score no marks.

- With working

Always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.
Any case of suspected misread loses 2A (or B) marks on that part, but can gain the M marks.
If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.

- I gnoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

- Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part ofthe question CANNOT be awarded in another.

General Principles for Further Pure Mathematics Marking

(but note that specific mark schemes may sometimes override these general principles)

Method mark for solving a 3 term quadratic equation:

1. Factorisation:

$$
\begin{aligned}
& \left(x^{2}+b x+c\right)=(x+p)(x+q) \text {, where }|p q|=|c| \text { leading to } x=\ldots \\
& \left(a x^{2}+b x+c\right)=(m x+p)(n x+q) \text { where }|p q|=|c| \text { and }|m n|=|a| \text { leading to } x=\ldots .
\end{aligned}
$$

2. Formula:

Attempt to use the correct formula (shown explicitly or implied by working) with values for a, b and c, leading to $x=\ldots$.
3. Completing the square:

$$
x^{2}+b x+c=0:\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c=0, \quad q \neq 0 \quad \text { leading to } x=\ldots .
$$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $\left(x^{n} \rightarrow x^{n-1}\right)$
2. Integration:

Power of at least one term increased by 1. $\left(x^{n} \rightarrow x^{n+1}\right)$

Use of a formula:

Generally, the method mark is gained by either
quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values
or, where the formula is not quoted, the method mark can be gained by implication from the substitution of correct values and then proceeding to a solution.

Answers without working:

The rubric states "Without sufficient working, correct answers may be awarded no marks".
General policy is that if it could be done "in your head" detailed working would not be required.
(Mark schemes may override this eg in a case of "prove or show...."

Exact answers:

When a question demands an exact answer, all the working must also be exact. Once a candidate loses exactness by resorting to decimals the exactness cannot be regained.

Rounding answers (where accuracy is specified in the question)

Penalise only once per question for failing to round as instructed - ie giving more digits in the answers.
Answers with fewer digits are automatically incorrect, but the isw rule may allow the mark to be awarded before the final answer is given.

J une 18

4PMO Paper 2
Mark Scheme

\begin{tabular}{|c|c|}
\hline Question Number \& Scheme Marks

\hline 3 \& $$
\begin{aligned}
& V=5 h^{3} \Rightarrow \frac{\mathrm{~d} V}{\mathrm{~d} h}=15 h^{2} \text { or } \frac{\mathrm{d} h}{\mathrm{~d} V}=\frac{1}{15}\left(\frac{V}{5}\right)^{-\frac{2}{3}} \\
& \frac{\mathrm{~d} V}{\mathrm{~d} t}=24 \text { or } \frac{\mathrm{d} V}{\mathrm{~d} t}=-24 \\
& 800=5 h^{3} \Rightarrow h^{3}=160, h=\sqrt[3]{160}, h=4 \sqrt{10}, h=5.4288 \ldots \\
& \frac{\mathrm{~d} h}{\mathrm{~d} t}=\frac{\mathrm{d} h}{\mathrm{~d} V} \times \frac{\mathrm{d} V}{\mathrm{~d} t},=\frac{24}{15(\sqrt[3]{160})^{2}}\left(=\frac{24}{442.0 \ldots}\right) \\
& \frac{\mathrm{d} h}{\mathrm{~d} t}=0.0543 \ldots \\
& (\text { Rate of decrease }=) 0.054 \mathrm{~cm} / \mathrm{s}
\end{aligned}
$$

\hline M1
A1
B1
B1

B1

M1

$\substack{\text { A1ft } \\ \text { A1cso }}$ \& | Intermediate decimal answers should be at least 3 sf. |
| :--- |
| Differentiate V wrt h or h wrt V |
| Correct expression for $\frac{\mathrm{d} V}{\mathrm{~d} h}$ or $\frac{\mathrm{d} h}{\mathrm{~d} V}$ |
| These 2 marks can be given if $15 h^{2}$ is seen used correctly in their chain rule. |
| $\frac{\mathrm{d} V}{\mathrm{~d} t}=24$ or -24 seen explicitly or used. |
| Correct value for h^{3} or h when $V=800$, seen explicitly or used. Award for any of $h^{3}=160, h=\sqrt[3]{160}, h=4 \sqrt{10}, h=5.42 \ldots$ min 3 sf OR if $\frac{\mathrm{d} h}{\mathrm{~d} V}$ was found, use of $V=800$ |
| Quote a correct chain rule for solving the problem. Terms can be in any (correct) order Correct numbers in the chain rule, follow through previous results. |
| Correct final answer must be positive. |

\hline
\end{tabular}

Question Number	Scheme	Marks
4(a)	$3 x=\ln 8$ or $x=\frac{1}{3} \ln 8$ or $\log _{\mathrm{e}} 8=3 x \quad$ or $\mathrm{e}^{x}=2$ or $\quad \mathrm{e}^{x}=\sqrt[3]{8} \quad \mathrm{e}^{x}=8^{\frac{1}{3}}$ $x=\ln 2$	M1 A1
(b)	$\begin{array}{lr} 2 \mathrm{e}^{3 x}=\left(\mathrm{e}^{3 x}-4\right)^{2} & \text { or } y=\left(\frac{y}{2}-4\right)^{2} \\ 0=\left(\mathrm{e}^{3 x}\right)^{2}-10 \mathrm{e}^{3 x}+16 & y^{2}-20 y+64=0 \\ \left(\mathrm{e}^{3 x}-8\right)\left(\mathrm{e}^{3 x}-2\right)=0 & (y-16)(y-4)=0 \end{array}$	M1 A1
	$\begin{array}{lll} \mathrm{e}^{3 x}=8 & x=\frac{1}{3} \ln 8=\ln 2 & y=16 \\ \mathrm{e}^{3 x}=2 & x=\frac{1}{3} \ln 2 & y=4 \\ (\ln 2,16) \quad\left(\frac{1}{3} \ln 2,4\right) & \end{array}$	M1 A1 A1 (5)
(c)	Length $P Q=\sqrt{\left(\ln 2-\frac{1}{3} \ln 2\right)^{2}+12^{2}}, \quad=12.0088 \ldots=12.009$	M1,A1
(a)		
M1		
A1	Correct exact value for x. If $x=\ln 2$ is seen ignore any decimal value that follows. (NB: This is the only form of the answer that fits the demand.) Correct answer without working scores M1A1	
(b)		
M1	Eliminate either variable to obtain an equation in one variable A correct 3 term quadratic, terms in any order (any equivalent of those shown) If $\left(\mathrm{e}^{3 x}\right)^{2}$ has been expanded incorrectly but then the mistake reversed when factorising this mark should be awarded.	
A1		
M1	Factorise or use the formula for their 3TQ and solve to $x=\ldots$ or $y=\ldots$ Some candidates use a substitution here and sometimes it is $y=\mathrm{e}^{3 x}$ If they reverse their substitution they can achieve full marks; if they fail to reverse it the max mark available is M1A1M0A0A0	
A1	2 correct exact values for x or y (ie $2 x$ values or $2 y$ values or correct coordinates of 1 point) Values for x may be any equivalent, eg $\ln \sqrt[3]{2}$	
A1	Coordinates for both points correct - need not be written in coordinate brackets, but pairing must be clear. (Do not isw if incorrect pairing shown.)	
(c)		
M1 A1	Use the correct formula for the length of a line with their coordinates found in (b)Correct length of $P Q$, must be 3 dp	

Question Number	Scheme Marks
5(a)	$a+a r^{2}=75$ M 1 $a r+a r^{2}=45$ A 1 $\frac{1+r^{2}}{r+r^{2}}=\frac{75}{45}\left(=\frac{5}{3}\right)$ dM 1 $2 r^{2}+5 r-3=0 \quad(2 r-1)(r+3)=0$ $r=\frac{1}{2}$ or -3 M1 (NB A1 on e-PEN) A1 $a=\frac{75}{\left(1+\frac{1}{4}\right)}=60$ B1 $S=\frac{a}{1-r}=\frac{60}{\frac{1}{2}}=120$ or $S=\frac{a\left(1-r^{n}\right)}{1-r}$ with $\left.n=\infty\right)$ M1A1cao (3) $[8]$
(a) M1 A1 dM1 M1 A1 (b) B1 M1 A1cao	Form an equation in a and r using either of the pieces of information given. Form a second equation with both equations correct Eliminate a from their equations using a correct method. Depends on the first M mark. Solve their 3 term quadratic to obtain at least one value for the common ratio. (The method used must be shown or correct answers from a correct equation seen) Both values correct ($1 / 2$ or 0.5) Correct answers from incorrect or no working - send to review. Obtain the correct value for a using $r=\frac{1}{2}$ Can be awarded if seen in (a) and used in (b) Use $S=\frac{a}{1-r}$ with their value of a and a value of r found in (a) for which $\|r\|<1$ Correct answer only

Question Number	Scheme	Marks
6(a)	$(V=) 5 x \times 2 x \times h=1000 \text { or } 10 x^{2} h=1000$	B1
	$(S=) 5 x \times 2 x+2 h(5 x+2 x)$	M1
	$S=10 x^{2}+\frac{1400}{x} *$	M1A1cso (4)
(b)	$\frac{\mathrm{d} S}{\mathrm{~d} x}=20 x-1400 x^{-2}$	M1
	$\frac{\mathrm{d} S}{\mathrm{~d} x}=0 \Rightarrow x^{3}=70, \text { or } \quad x=\sqrt[3]{70} \quad(x=4.121 \ldots)$	M1,A1
	$S_{\min }=10(\sqrt[3]{70})^{2}+\frac{1400}{\sqrt[3]{70}}=509.54 \ldots=510$	M1A1 (5)
(c)	$\frac{\mathrm{d}^{2} S}{\mathrm{~d} x^{2}}=20+2800 x^{-3}$	M1
	$x=\sqrt[3]{70} \Rightarrow \frac{\mathrm{~d}^{2} S}{\mathrm{~d} x^{2}}>0 \therefore \mathrm{~min}$	A1ft (2)
		[11]
(a)		
$\begin{gathered} \text { B1 } \\ \text { M1 } \end{gathered}$	Obtain a correct equation connecting x and h (any equivalent allowed)	
	Obtain an expression for S in terms of x and h, correct or with top included. This is a "show that" question so we require adequate evidence for this expression, in particular areas of the separate sides must be identifiable. (14xh with no evidence scores M0)	
M1	Use the equation to eliminate h to give an expression for S in terms of x only.	
A1cso	Obtain the given expression for S. Must start $S=\ldots$ No errors in the working	
M1	Differentiate the given expression, power of x to decrease in at least one term	
M1	Equate their derivative to zero and solve for x^{3}	
A1	Correct value of x^{3} or x, seen explicitly or used. (Correct x implies correct method.)	
M1	Use their value of x to obtain the corresponding value of S	
A1	Correct value of S. Must be 3 sf .	
	NB: These last 2 marks may only be given for work seen in (b)	
(c)	Working for (c) must be seen or used in (c) to gain	
M1	Obtain the second derivative. (If signs of $\mathrm{dS} / \mathrm{d} x$ on either side of their x are considered, numerical calculations must be	
A1ft	Establish that the minimum has been obtained and give a conclusion. No need to calculate the value of the second derivative. Follow through their x provided $x>0$ and the second derivative is algebraically correct.	
NB:	Solutions for (b) and (c) by trial and improvement - send to Review.	

Question Number	Scheme	Marks
7(a)	$\left(1+\frac{2 x}{5}\right)^{\frac{1}{2}}=1+\frac{1}{2}\left(\frac{2 x}{5}\right)+\frac{\frac{1}{2} \times\left(-\frac{1}{2}\right)}{2!}\left(\frac{2 x}{5}\right)^{2}+\frac{\frac{1}{2} \times\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{3!}\left(\frac{2 x}{5}\right)^{3}$	M1
	$=1+\frac{x}{5}-\frac{x^{2}}{50}+\frac{x^{3}}{250} \ldots$	A1A1 (3)
(b)	$\left(1-\frac{2 x}{5}\right)^{-\frac{1}{2}}=1-\frac{1}{2}\left(-\frac{2 x}{5}\right)+\frac{-\frac{1}{2}\left(-\frac{3}{2}\right)}{2!}\left(-\frac{2 x}{5}\right)^{2}+\frac{-\frac{1}{2}\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right)}{3!}\left(-\frac{2 x}{5}\right)^{3}$	M1
	$=1+\frac{x}{5}+\frac{3 x^{2}}{50}+\frac{x^{3}}{50}+\ldots$	A1A1 (3)
(c)	$-\frac{5}{2} \leq x \leq \frac{5}{2}$ or $-\frac{5}{2} \leq x<\frac{5}{2}$ or $-\frac{5}{2}<x \leq \frac{5}{2}$ or $-\frac{5}{2}<x<\frac{5}{2}$ (Accept $\|x\|<\frac{5}{2}$ or $\|x\| \leqslant \frac{5}{2}$)	B1 (1)
(d)	$\begin{aligned} & \left(\frac{5+2 x}{5-2 x}\right)^{\frac{1}{2}}=\left(\frac{1+\frac{2}{5} x}{1-\frac{2}{5} x}\right)^{\frac{1}{2}}=\left(1+\frac{2 x}{5}\right)^{\frac{1}{2}} \times\left(1-\frac{2 x}{5}\right)^{-\frac{1}{2}} \\ & \quad=\left(1+\frac{x}{5}-\frac{x^{2}}{50} \ldots\right)\left(1+\frac{x}{5}+\frac{3 x^{2}}{50} \ldots\right) \end{aligned}$	M1
(e)	$=1+\frac{x}{5}+\frac{3 x^{2}}{50}+\frac{x}{5}+\frac{x^{2}}{25}-\frac{x^{2}}{50}+\ldots$	M1
	$=1+\frac{2 x}{5}+\frac{2 x^{2}}{25}+\ldots$	A1 (3)
	$\int_{0.1}^{0.3}\left(\frac{5+2 x}{5-2 x}\right)^{\frac{1}{2}} \mathrm{~d} x \approx \int_{0.1}^{0.3}\left(1+\frac{2 x}{5}+\frac{2 x^{2}}{25}\right) \mathrm{d} x$	
	$=\left[x+\frac{x^{2}}{5}+\frac{2 x^{3}}{75}\right]_{0.1}^{0.3}$	M1A1ft
	$=0.3+\frac{0.3^{2}}{5}+\frac{2 \times 0.3^{3}}{75}-\left(0.1+\frac{0.1^{2}}{5}+\frac{2 \times 0.1^{3}}{75}\right),=0.21669 \ldots=0.2167$	dM1,A1 cao (4) [14]

Question Number	Scheme Marks
(a)	
M1	Attempt the binomial expansion. Must start with 1 and go up to at least x^{3}. $\left(\frac{2 x}{5}\right)$ must
A1	2 correct algebraic terms; must be simplified, but fractions equivalent to those shown accepted for this mark.
A1 (b)	Fully correct expansion as shown.
M1	Attempt the binomial expansion. Must start with 1 and go up to at least χ^{3}. $\left(-\frac{2 x}{5}\right)$ must be used in at least one term. Denominators 2 or $2!, 6$ or 3 !
A1	2 correct algebraic terms, but fractions equivalent to those shown accepted for this mark. Fully correct expansion as shown.
A1	
(c)	
B1	Award for any of the ranges shown ($5 / 2$ or 2.5 accepted) (ie x between $-5 / 2$ and $5 / 2$ with any inequality signs) Must be clear that the range applies to both expansions. Accept if just one range shown with no indication of expansion(s) it applies to or ranges for both expansions given and identical.
(d)	
M1	Deal with the 5 s to write the given expression in terms of the expressions in (a) and (b) can be their expansions or $\left(1+\frac{2 x}{5}\right)^{\frac{1}{2}} \times\left(1-\frac{2 x}{5}\right)^{-\frac{1}{2}}$
M1	Attempt the multiplication of their expansions from (a) and (b). Must have all terms needed up to x^{2}. Ignore higher powers. NB: This is not a dependent mark.
A1	Simplify to the 3 terms shown.
(e)	
M1	Attempt to integrate their expansion obtained in (d), min 2 terms. Must be a valid
A1ft	Correct integration of their expansion
dM1	Use the given limits correctly in their integrated expression; ie attempt to substitute 0.3 and 0.1 in their terms and subtract the substitutions. Depends on the first M mark of (e).
A1cao	NB: Correct answer w/o working scores $0 / 4$ here as question states "use algebraic integration".

Question Number	Scheme	Marks

(c)

M1 Use the result given in (b) to change the given equation to an equation in $\cos 4 x$. No need to collect terms here. (M mark so need not be correct.)
A1 Correct value for $\cos 4 x$ obtained
M1 For obtaining any correct value for $4 x$. Need not be one of the 2 values shown. At least 3 sf must be shown.
A1 For both values shown and no others within the range. Ignore extras outside the range..
Must be 3 sf.
ALT
M1
A1
Without using (b)

M1
A1 For both values shown and no others within the range. Ignore extras outside the range.
Must be 3 sf.
(d)
(i)M1

Attempt to use the result given in (b) to change the given integrand into one which can be integrated and attempt the integration. (M mark so integrand need not be correct.)
$\cos 4 \theta \rightarrow \pm \frac{1}{4} \sin 4 \theta, \quad \cos 2 \theta \rightarrow \pm \frac{1}{2} \sin 2 \theta$
A1 Fully correct after integration, constant not needed.
(ii)M1 Substitute the given limits in their changed function, provided the result from (b) has been used in (i). (Candidates who use the equation from (c) cannot have this mark.)
A1
A1cao

Replace the trig functions with the exact values (not a follow through mark) Correct final answer in the given form obtained.

Question Number	Scheme	Marks
9	$\begin{aligned} & \text { Grad } A B=\frac{6-4}{1-(-4)}=\frac{2}{5} \\ & \text { Grad } A C=\frac{-1-4}{-2-(-4)}=-\frac{5}{2} \end{aligned}$	$\begin{array}{\|l} \hline \text { M1 } \\ \text { A1 } \end{array}$
(b)	$\frac{2}{5} \times\left(-\frac{5}{2}\right)=-1 \therefore A B$ is perpendicular to $A C$. See notes for 2 alt methods $\begin{aligned} & \frac{y+1}{6+1}=\frac{x+2}{1+2} \\ & 7 x-3 y+11=0 \end{aligned}$	M1A1cso (4) M1A1 A1 (3)
(c)	Grad $l=-\frac{5}{2} \quad(=\operatorname{grad} A C)$ Midpoint $A B=\left(-\frac{3}{2}, 5\right)$ Eqn. $l: y-5=-\frac{5}{2}\left(x+\frac{3}{2}\right) \quad\left(y=\frac{-5}{2} x+\frac{5}{4}\right)$	B1B1 M1A1 (4)
(d)	(E is midpoint of $B C$) E is $\left(-\frac{1}{2}, \frac{5}{2}\right)$ or decimal equivalents	B1, B1 (2)
(e)	$A E$ perp to $B C$	M1
	$\begin{aligned} & E C=\sqrt{\left(1.5^{2}+3.5^{2}\right)}=\sqrt{14.5} \\ & A E=\sqrt{\left(3.5^{2}+1.5^{2}\right)}=\sqrt{14.5} \end{aligned}$	M1 A1
	$\text { Area } \triangle A E C=\frac{1}{2} A E \times E C=\frac{1}{2} \times 14.5=7.25 \text { oe }$	A1 (4) [17]
ALT 1	$\text { Area } \triangle A E C=\frac{1}{2} \text { Area } \triangle A B C$	M1
	$A B=\sqrt{\left(5^{2}+2^{2}\right)}=\sqrt{29}$	M1
	$A C=\sqrt{2^{2}+5^{2}}=\sqrt{29}$	A1
	Area $\triangle A E C=\frac{1}{2} \times \frac{1}{2} \times A B \times A C=\frac{29}{4}$ oe $\left(7 \frac{1}{4}\right.$ or 7.25$)$	A1

Question Number	Scheme Marks
(c)	
B1	Either coordinate of the midpoint of $A B$
B1	Second coordinate of midpoint
M1	Any complete method for the equation of the perpendicular bisector. Must include the gradient as the negative reciprocal of their gradient of $A B$ or their gradient of $A C$. If (a) done by Pythagoras an appropriate gradient must be found for this M mark.
A1 (d)	Correct equation of the perpendicular bisector, any equivalent form. Must have $y=\ldots$
B1	Either coordinate of E; fraction or decimal
B1	Second coordinate of E; fraction or decimal
(e)	
M1	For the statement shown. Give by implication if the following work implies use of this. No explanation needed.
M1	Attempting the length of EC or $A E$
A1	Both lengths correct.
A1	Obtain the correct area of the triangle. (7.3 scores A0)
$\begin{gathered} \text { ALT 1: } \\ \text { M1 } \end{gathered}$	For the statement shown. Give by implication if the following work implies use of this. No explanation needed.
M1	Attempting the length of $A B$ or $A C$
A1	Both lengths correct. Award marks if work seen in (a) and used here.
A1	Obtain the correct area of the triangle. (7.3 scores A0)
ALT 2:	By "determinant" method.
M1	Area $\triangle A E C=\left(\frac{1}{2}\right)\left\|\begin{array}{cccc}-4 & -\frac{1}{2} & -2 & -4 \\ 4 & \frac{5}{2} & -1 & 4\end{array}\right\| \begin{aligned} & \frac{1}{2} \text { not needed for this mark. } \\ & \begin{array}{l}\text { Coords of } A, C \text { and their coords of } E \text { needed } \\ \text { with first pair repeated at the end. } \\ \text { Points in any order. }\end{array}\end{aligned}$
A1	Correct numbers in the "determinant" (with or without the $\frac{1}{2}$ present)
M1	Include the $\frac{1}{2}$ and attempt to multiply out their determinant.
A1	Correct area, must be positive.
NB	Enter marks in e-PEN order (M1M1A1A1) not in marking order (M1A1M1A1)

Question Number	Scheme	Marks
10(a)	$4 a^{2}=16 a \quad a=4$	M1A1 (2)
(b)	A is $(4,8) \quad x_{B}=8 \quad($ accept B is $(8,0))$	M1A1 (2)
(c)	$(\mathrm{Vol}=\pi) \int_{0}^{4} y^{2} \mathrm{~d} x=(\pi) \int_{0}^{4} 16 x \mathrm{~d} x$	M1
	$=(\pi)\left[8 x^{2}\right]_{0}^{4}$	dM1
	Vol of cone $=\frac{1}{3} \pi \times 8^{2} \times 4\left(=\frac{256 \pi}{3}\right)$ or $\pi \int_{4}^{8}(-2 x+16)^{2} \mathrm{~d} x$	B1 NB A1 on e-PEN
	$128 \pi+\frac{256 \pi}{3}=670$	ddM1A1cao (5)
		[9]
(a)	Use the coordinates of A and the equation of C to form an equation in a and solve to$\begin{aligned} & a=\ldots \\ & a=4 \end{aligned}$	
M1		
A1 (b)		
	Use their value of a and attempt to obtain the x coordinate of B. May find the equation of l or draw a diagram. Award by implication if the correct value is written down.$x_{B}=8$	
A1 (c)		
M1	For $\int 16 x \mathrm{~d} x$ seen explicitly or implied by subsequent work. Limits and π not needed	
$\begin{gathered} \text { dM1 } \\ \text { B1 } \end{gathered}$	Attempt the integration. Limits and π not needed. Depends on the first M mark NB A1 on e-PEN Correct volume of the cone, as a product from using the formula or in integral form with correct limits	
ddM1	Include π, substitute the limits 0 to their a in the volume of rev of the curve, evaluate the volume of the cone and add their two volumes. Depends on both the above M marks.	
A1cao	Correct complete volume, must be 3 sf .	
	Attempts at line - curve or curve - line:	
	$\int[16 x-(-2 x+16)]^{2} \mathrm{~d} x \quad$ scores M0 (so 0/5)	
	$\int\left[16 x-(-2 x+16)^{2}\right] \mathrm{d} x \quad$ scores M1	
	If $16 x$ is integrated on its own award dM1 but no more marks are available.	

