Pearson Edexcel

Mark Scheme (Results)

Summer 2018

Pearson Edexcel International GCSE In Further Pure Mathematics (4PM0) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2018
Publications Code 4PMO_01_1806_MS*
All the material in this publication is copyright
© Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
o M marks: method marks
o A marks: accuracy marks
o B marks: unconditional accuracy marks (independent of M marks)
- Abbreviations
o cao - correct answer only
o ft-follow through
o isw - ignore subsequent working
o SC - special case
o oe - or equivalent (and appropriate)
o dep - dependent
o indep - independent
o eeoo - each error or omission

- No working

If no working is shown then correct answers may score full marks If no working is shown then incorrect (even though nearly correct) answers score no marks.

- With working

Always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.
Any case of suspected misread loses 2A (or B) marks on that part, but can gain the M marks.
If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.

- I gnoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

- Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

General Principles for Further Pure Mathematics Marking

(but note that specific mark schemes may sometimes override these general principles)

Method mark for solving a 3 term quadratic equation:

1. Factorisation:

$$
\begin{aligned}
& \left(x^{2}+b x+c\right)=(x+p)(x+q) \text {, where }|p q|=|c| \quad \text { leading to } x=\ldots . \\
& \left(a x^{2}+b x+c\right)=(m x+p)(n x+q) \text { where }|p q|=|c| \text { and }|m n|=|a| \quad \text { leading to } x=\ldots .
\end{aligned}
$$

2. Formula:

Attempt to use the correct formula (shown explicitly or implied by working) with values for a, b and c, leading to $x=\ldots$.
3. Completing the square:

$$
x^{2}+b x+c=0: \quad\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c=0, \quad q \neq 0 \quad \text { leading to } x=\ldots
$$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $\left(x^{n} \rightarrow x^{n-1}\right)$

2. Integration:

Power of at least one term increased by 1. $\left(x^{n} \rightarrow x^{n+1}\right)$

Use of a formula:

Generally, the method mark is gained by either
quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values
or, where the formula is not quoted, the method mark can be gained by implication from the substitution of correct values and then proceeding to a solution.

Answers without working:

The rubric states "Without sufficient working, correct answers may be awarded no marks".
General policy is that if it could be done "in your head" detailed working would not be required. (Mark schemes may override this eg in a case of "prove or show...."

Exact answers:

When a question demands an exact answer, all the working must also be exact. Once a candidate loses exactness by resorting to decimals the exactness cannot be regained.

Rounding answers (where accuracy is specified in the question)

Penalise only once per question for failing to round as instructed - ie giving more digits in the answers. Answers with fewer digits are automatically incorrect, but the isw rule may allow the mark to be awarded before the final answer is given.

4PMO Further Pure Mathematics Paper 1

Question number		Scheme	Marks
1 (a)		$\begin{aligned} & \frac{1}{2} \times 10^{2} \theta=25 \\ & \theta=\frac{1}{2} \end{aligned}$	M1 A1 [2]
(b)		arc length $=r \theta=10 \times \frac{1}{2}=5(\mathrm{~cm})$	$\begin{gathered} \text { M1A1 } \\ {[2]} \\ \hline \end{gathered}$
Total 4 marks			
Notes			
(a)	M1	Uses correct formula for area of a sector $A=\frac{1}{2} r^{2} \theta$ or rearranged to give $\theta=\frac{2 A}{r^{2}}$ with fully correct substitution to obtain a value for θ	
	A1	$\theta=\frac{1}{2}$ or 0.5 in radians accept any equivalent fraction e.g. $\frac{50}{100}$	
(b)	M1	$\mathbf{1}^{\text {st }}$ Method Uses their value for θ in the correct formula $l=r \theta$ to achieve a value for l. Accept only $r=10 \mathrm{~cm}$ and their value for θ $2^{\text {nd }}$ Method Uses the formula $l=\frac{2 A}{r} \Rightarrow l=\frac{2 \times 25}{10}=(5)$ Accept only correct values for r and A.	
	A1	$l=5$ (cm)	
ALT - Works in degrees			
(a)	M1	Uses correct formula for area of a sector $A=\pi r^{2} \frac{\theta^{\circ}}{360^{\circ}}$ AND attempts to convert their angle $\left(28.647 \ldots{ }^{\circ}\right)$ correctly into radians $\frac{{ }^{\prime} 28.647 \ldots{ }^{\circ} \times \pi}{180}(0.16 \pi)$	
	A1	$\theta=\frac{1}{2}$ or 0.5 accept any equivalent fraction e.g. $\frac{50}{100}$ Accept 0.499 or better	
(b)	M1	Use the correct formula $l=2 \pi r \frac{\theta^{\circ}}{360^{\circ}}$ with their angle in degrees to find a value for l	
	A1	$l=5(\mathrm{~cm})$ Accept 4.99 (cm) or better.	
Total 4 marks			

Question number	Scheme	Marks
2	$\begin{aligned} & \alpha+\beta=\frac{5}{3}, \alpha \beta=\frac{4}{3} \\ & \alpha+\frac{1}{2 \beta}+\beta+\frac{1}{2 \alpha}=\alpha+\beta+\frac{\alpha+\beta}{2 \alpha \beta},=\frac{5}{3}+\frac{\frac{5}{3}}{\frac{8}{3}}=\frac{55}{24} \\ & \left(\alpha+\frac{1}{2 \beta}\right)\left(\beta+\frac{1}{2 \alpha}\right)=\alpha \beta+\frac{1}{2}+\frac{1}{2}+\frac{1}{4 \alpha \beta},=\frac{4}{3}+1+\frac{3}{16}=\frac{121}{48} \\ & x^{2}-\frac{55}{24} x+\frac{121}{48}(=0) \\ & 48 x^{2}-110 x+121=0 \end{aligned}$	$\begin{gathered} \text { B1 } \\ \text { M1,A1 } \\ \text { M1,A1 } \\ \text { M1 } \\ \text { A1 } \\ {[7]} \\ \hline \end{gathered}$
Total 7 marks		
Notes		
B1	For both correct values of the sum and product.	
M1	For the correct algebra for the SUM. They must reach $\begin{aligned} & \alpha+\beta+\frac{(\alpha+\beta)}{2 \alpha \beta} \text { or }\left[\alpha+\beta+\frac{2(\alpha+\beta)}{4 \alpha \beta}\right] \\ & \text { or } \frac{2 \alpha \beta(\alpha+\beta)+(\alpha+\beta)}{2 \alpha \beta} \text { or } \frac{(\alpha+\beta)(2 \alpha \beta+1)}{2 \alpha \beta} \end{aligned}$ Their correct expression for the sum must be such as to substitute $\alpha+\beta$ and $\alpha \beta$ directly in.	
A1	Substitute in their values for $\alpha+\beta$ and $\alpha \beta$.$\text { Sum }=\frac{55}{24}$	
M1	For the correct algebra for the PRODUCT. They must reach $\alpha \beta+\frac{1}{2}+\frac{1}{2}+\frac{1}{4 \alpha \beta}$ or $\frac{(2 \alpha \beta+1)^{2}}{4 \alpha \beta}$ Their correct expression for the product must be such as to substitute $\alpha \beta$ directly in	
A1	Substitute in their values for $\alpha \beta$.$\text { Product }=\frac{121}{48}$	
M1	Use their SUM and PRODUCT correctly in a quadratic equation. $x^{2}+(-$ their sum $) x+($ their product $) \quad(=0)$	
A1	$48 x^{2}-110 x+121=0$ oe for example $96 x^{2}-220 x+242=0$ Must be integer values only.	

Questio numbe			Scheme		Marks
3 (a)		$\begin{aligned} & \frac{\sin C}{12}=\frac{\sin 42^{\circ}}{9} \\ & C=63.14 \ldots{ }^{\circ} 116.85^{\circ} \\ & \angle A B C=180-\left({ }^{\prime \prime} C^{\prime \prime}+42\right) \\ & B=180-\left({ }^{\prime} C^{\prime}+42\right), \end{aligned}$	$B=74.9^{\circ}$	21.1° (Accept 21.2 ${ }^{\circ}$)	M1A1 A1 M1A1 [5]
(b)		$\begin{aligned} & \text { Area }=\frac{1}{2} \times 12 \times 9 \sin " B \text { ", }=\frac{1}{2} \times 12 \times 9 \sin 21.1^{\circ} \\ & =19 \text { or } 20\left(\mathrm{~cm}^{2}\right) \end{aligned}$			M1,A1 (smaller angle) A1
					al 8 mark
Notes					
(a)	M1	Uses Sine Rule either way around with correct values and achieves a value for an angle in degrees. (Not just the sine of the angle)			
	A1	For either $\mathrm{C}=63.1^{\circ}-63.2^{\circ}$ OR C $=116.8^{\circ}-116.9^{\circ}$			
	A1	For $\mathrm{C}=63.1^{\circ}-61.2^{\circ}$ AND C $=116.8^{\circ}-116.9^{\circ}$			
	M1	For $\angle A B C=180-\left({ }^{\prime} C^{\prime \prime}+42\right)$ to achieve at least one value for $\angle A B C$			
	A1	$\angle A B C=74.9^{\circ}$ AND 21.1° both required rounded correctly (Accept 21.2 ${ }^{\circ}$)			
(b)	M1	For a correct expression for the area. They must use the appropriate angle with the correct lengths. For example; $9 \mathrm{~cm}, 12 \mathrm{~cm}$ with their angle B (even if it is incorrect but identified as their angle B). If they do not have an angle B and use lengths 9 cm and 12 cm , award M0. If they only have one value for angle B, allow this mark. isw extra attempts after a correct method seen.			
	A1	For using 21.1° or 21.2° only			
	A1	Area $=19$ or $20\left(\mathrm{~cm}^{2}\right)$ accept this for full marks even if area of $52\left(\mathrm{~cm}^{2}\right)$ is seen as well.			

Rounding: Please read the notes carefully on rounding in General Guidance

Question number		Scheme	Marks
5 (a) (i) (ii)	$\begin{align*} & \int\left(3-x+\frac{1}{x^{3}}\right) \mathrm{d} x=3 x-\frac{1}{2} x^{2}-\frac{1}{2 x^{2}}(+c) \quad\left(\frac{1}{2} x^{-2} \text { or } \frac{1}{2 x^{2}}\right) \\ & {\left[3 x-\frac{1}{2} x^{2}-\frac{1}{2 x^{2}}\right]_{1}^{2}=6-2-\frac{1}{8}-\left(3-\frac{1}{2}-\frac{1}{2}\right)=1 \frac{7}{8} \quad \text { (or } 1.875 \text {) }} \tag{or1.875} \end{align*}$		M1A1 M1A1 [4]
(b) (i) (ii)	$\begin{aligned} & \int 6 \sin 3 x \mathrm{~d} x=-2 \cos 3 x \quad(+c) \\ & {[-2 \cos 3 x]_{\frac{\pi}{9}}^{\frac{\pi}{6}}=-2 \cos \frac{\pi}{2}+2 \cos \frac{\pi}{3},=1} \end{aligned}$		M1A1 dM1,A1 [4]
Total 8 marks			
Notes			
(a)(i)	M1	$x^{-3} \Rightarrow k x^{-2}$ and one of $3 \Rightarrow 3 x$ or $-x \Rightarrow-k x^{2}$	
	A1	Fully correct integrated expression. Condone a missing ($+c$) Ignore spurious integral signs.	
(ii)	M1	Substitutes 2 and 1 into their integrated expression (at least one term integrated) and subtracts the correct way around and reaches a value for the integrated expression.	
	A1	For $1 \frac{7}{8}$ or equivalent fraction or 1.875	
(b)(i)	M1	Attempts to integrate the expression. Accept as a minimum $\sin 3 x \Rightarrow-k \cos 3 x \quad k \neq \pm 1, \pm 3$ or 0 $\pm 18 \cos 3 x$ or $\pm 6 \cos 3 x$ are M0	
	A1	For $-2 \cos 3 x(+c) \quad$ Condone a missing ($+c$) Ignore spurious integral signs.	
(ii)	dM1	Substitutes $\frac{\pi}{6}$ and $\frac{\pi}{9}$ into their integrated expression and subtracts the correct way around and reaches a value for the integrated expression.	
	A1	For 1	

Question number		Scheme	Marks
6 (a)		(i) $y=2$ (ii) $x=3$	B1 B1 [2]
(b)		(i) $(2,0)$ Accept $x=2$ (ii) $\left(0, \frac{4}{3}\right)$ Accept $y=\frac{4}{3}$	B1 B1 [2]
(c)			B1 Shape B1 Asymptotes B1 Crossing pts (Non-zero coord needed only)
Total 7 marks			
Notes			
(a) (i) (ii)	B1	$y=2$ only. Do not accept just ' 2 '. This must be an equation of a line	
	B1	$x=3$ only. Do not accept just ' 3 '. This must be an equation of a line	
If there is only one answer or they are not marked (i) and (ii) given, mark them in the order written and award accordingly			
(b) (i) (ii)	B1	$(2,0)$ Accept $x=2$	
	B1	$\left(0, \frac{4}{3}\right)$ Accept $y=\frac{4}{3}$	
If there is only one answer or they are not marked (i) and (ii) given, mark them in the order written and award accordingly			
(c)	B1	Shape: One branch must be in the first quadrant as shown, and the second branch in the $1^{\text {st }}, 2^{\text {nd }}$ and $4^{\text {th }}$ quadrants as shown. Do not accept curves that come back on themselves or overlap. See below for samples of error types.	

	B1	Both of their asymptotes drawn and labelled correctly. Accept a vertical line drawn with 3 written on the x-axis, and a horizontal line drawn with 2 written on the y axis. There must be at least one branch of the curve drawn for the award of this mark.
B1	Both intersections with the axes shown. 0 not required as long as values are clear. Ft their answers from (b)	

(c)

Question number	Scheme	Marks
7 (a)	$v=0 \Rightarrow 5 \cos 2 t=0 \quad$ and solve to $t=\ldots$ $t=\frac{1}{2} \times \frac{\pi}{2}=\frac{\pi}{4} \quad$ or $0.7853 \ldots$. (accept 0.785 or better)	M1 A1 [2]
(b)	$\begin{aligned} & a=-10 \sin 2 t \\ & \left\|a_{\max }\right\|=10\left(\mathrm{~m} / \mathrm{s}^{2}\right) \end{aligned}$	M1A1 A1 [3]
(c)	$\begin{aligned} & s=\int 5 \cos 2 t \mathrm{~d} t=\frac{5}{2} \sin 2 t(+c) \\ & t=0 \quad s=0.2 \Rightarrow c=0.2 \\ & t=\frac{\pi}{4} \quad s=\frac{5}{2} \sin \frac{\pi}{2}+0.2=2.7 \quad \text { oe }(\mathrm{m}) \end{aligned}$ ALT $s-0.2=\int_{0}^{\frac{\pi}{4}} 5 \cos 2 t \mathrm{~d} t=\left[\frac{5}{2} \sin 2 t\right]_{0}^{\frac{\pi}{4}}$ Substitute limits M1 Correct answer A1	M1A1 dM1 A1 [4] \{dM1A1 \}

Notes		
(a)	M1	Sets $5 \cos 2 t=0$ and finds a value for t. Allow work in degrees for this mark.
	A1	$t=\frac{\pi}{4}$ (accept 0.785 or better)
(b)	M1	Attempts to differentiate the given v to achieve as a minimum $-k \sin 2 t \quad k \neq 0$
	A1	For $a=-10 \sin 2 t$
	A1	For $10\left(\mathrm{~m} / \mathrm{s}^{2}\right)$ do not accept -10 for this mark
(c)	M1	For an attempt to integrate the given v to achieve as a minimum $\frac{k \sin 2 t}{2}, k \neq 2$
	A1	For the correct integrated expression for $s,+c$ not required for this mark.
	dM1	For an attempt to find c when $t=0$ and uses $t=\frac{\pi}{4}$ (allow 45°) to find a value for s. Some are adding 0.2 at the end of their calculation which is fine for this mark.
	A1	$s=2.7$
ALT		
(c)	M1	For an attempt to integrate the given v to achieve as a minimum $\frac{k \sin 2 t}{2}, k \neq 2$
	A1	For the correct integrated expression for s
	dM1	Substitutes in both limits of $\frac{\pi}{4}$ and 0 (allow 45°) into a changed expression, and adds 0.2 to find a value of s
	A1	For $s=2.7$

Question number	Scheme	Marks
8 (a)	$\begin{aligned} & y=15-7 x,=x^{2}-6 x+9 \\ & x^{2}+x-6=0 \\ & (x+3)(x-2)=0 \\ & x=-3 \quad y=36 \quad(-3,36) \\ & x=2 \quad y=1 \quad(2,1) \end{aligned}$	M1 A1 dM1 A1 A1 $[5]$
(b)	$\begin{aligned} & \text { Area }=\int_{-3}^{2}\left((15-7 x)-\left(x^{2}-6 x+9\right)\right) \mathrm{d} x=\int_{-3}^{2}\left(-x^{2}-x+6\right) \mathrm{d} x \\ & =\left[-\frac{1}{3} x^{3}-\frac{1}{2} x^{2}+6 x\right]_{-3}^{2} \\ & =-\frac{1}{3} \times 2^{3}-\frac{1}{2} \times 2^{2}+12-\left(\frac{27}{3}-\frac{1}{2} \times 9-18\right) \\ & =20 \frac{5}{6} \end{aligned}$	M1A1 M1 A1 [5]

Notes		
(a)	M1	Sets the equation of $l=$ the equation of C and attempts to form a 3TQ
	A1	Correct 3TQ $x^{2}+x-6=0$

\hline\end{array} $$
\begin{array}{l}\text { For any acceptable attempt to solve their 3TQ (please see general guidance for the } \\
\text { definition of an attempt using either factorisation, formula or completing the square. } \\
\text { This mark is dependent on the first M mark. Their 3TQ must have come from an } \\
\text { attempt to equate and rearrange the equations of the line and the curve. }\end{array}
$$\right\}\)

Method 3 Trapezium - curve

(b)	M1	For the correct method to find the area using a trapezium and curve. Area $=\frac{5^{\prime}}{2}\left(' 36^{\prime}+{ }^{\prime} 1\right.$ ' $)-\int_{--3^{\prime}}^{\prime 2 '^{\prime}}$ curve $\mathrm{d} x$ or accept Area $=\int_{--33^{\prime}}^{\prime 22^{\prime}}$ curve $\mathrm{d} x-\frac{{ }^{\prime} 5 '}{2}(' 36$ '+ '1' $)$	
	M1	For an attempt to integrate the given expression for the area under the curve. Ignore limits for this mark Please see General Guidance for the definition of an attempt. Integrating the curve only without evidence of an attempt to find the area of the trapezium (or equivalent) is M0.	
	A1	For Area of curve $=\left[\frac{x^{3}}{3}-3 x^{2}+9 x\right]_{-3}^{2}$ and area of trapezium (or equivalent) of $92 \frac{1}{2}$ Ignore limits for this mark.	
	M1	For substituting their limits ' 2 ' and ' -3 ' the correct way around and combining this either way round with their trapezium to evaluate the area. They must find a value for the area for this mark. ft through their values given in their initial statement.	
	A1	For $20 \frac{5}{6}$ or $\frac{125}{6}$ only.	If they find a negative value (from trapezium - line) allow only if they give a final positive value for the area.

Question number	Scheme	Marks
9 (a)	$\begin{aligned} & a+3 d=108 \\ & a+10 d=80 \end{aligned}$ (i) $\quad 7 d=-28, \quad d=-4$ (ii) $\quad a=120$	M1 A1 M1 A1 [4]
ALT	$\begin{aligned} & \left(7 \text { terms dec by 28) } \therefore d=-\frac{28}{7},=-4\right. \\ & 80=a+10(-4) \text { or } 108=a+3(-4) \\ & a=120 \end{aligned}$	$\begin{gathered} \text { M1A1 } \\ \text { M1 } \\ \text { A1 } \\ {[4]} \end{gathered}$
(b)	$\begin{aligned} & S_{n}=\frac{n}{2}(2 \times 120-4(n-1)) \\ & S_{n}=\frac{4 n}{2}(60-n+1)=2 n(61-n) \end{aligned}$	M1A1 A1 cso [3]
(c)	$\begin{aligned} & 2 n(61-n)=1100 \\ & 2 n^{2}-122 n+1100=0 \\ & (n-11)(n-50)=0 \quad n=11,50 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ dM1A1 [4]
111 marks		

Notes		
(a)	M1	For forming either $a+3 d=108$ OR $a+10 d=80$
	A1	For forming both $a+3 d=108$ AND $a+10 d=80$
	M1	For attempting to solve their simultaneous equations by any valid method.
	A1	Both $d=-4$ and $a=120$
ALT 1		
(a)	M1	$d=\frac{80-108}{7}=\ldots$
	A1	$d=-4$
	M1	Uses either $a+3 d=108$ or $a+10 d=80$ and substitutes their d to find a value for a.
	A1	$a=120$
No working: Award M1A1 for $d=-4$ with no working Award M1A1 for $a=120$ with no working		
(b)	M1	Uses the correct summation formula with their a and their d.
	A1	A fully correct un-simplified summation formula with both values of a and d correct.
	$\begin{aligned} & \text { A1 } \\ & \text { cso } \end{aligned}$	Achieves the given answer of $S_{n}=2 n(61-n)$ Note this is a show question, every step must be seen for the award of this mark.
(c)	M1	States $2 n(61-n)=1100$ or $1100=\frac{n}{2}\left(2 \times{ }^{\prime} 120^{\prime}+(n-1) \times-4\right)$
	A1	Forms the correct 3TQ Note: The $3 T Q$ does not need to $=0$. For example, $1100=122 n-2 n^{2}$ is acceptable for this mark.
	dM1	Solves their 3TQ by any method
	A1	$n=11,50$

Question number	Scheme	Marks
$10 \text { (a) (i) }$ (ii)	$\begin{aligned} & \overrightarrow{D C}=\overrightarrow{D A}+\overrightarrow{A C},=7 \mathbf{i}-10 \mathbf{j}-2 \mathbf{i}+15 \mathbf{j}=5 \mathbf{i}+5 \mathbf{j} \\ & \overrightarrow{D C}=\overrightarrow{A B} \end{aligned}$ $\therefore A B C D$ is a parallelogram	$\begin{gathered} \text { M1,A1 } \\ \\ \text { M1 } \\ \text { A1 } \\ {[4]} \\ \hline \end{gathered}$
(b)	$\begin{aligned} & \overrightarrow{B D}=\overrightarrow{B A}+\overrightarrow{A D}=-5 \mathbf{i}-5 \mathbf{j}-7 \mathbf{i}+10 \mathbf{j}=-12 \mathbf{i}+5 \mathbf{j} \\ & \text { unit vector }=(\pm) \frac{1}{13},(-12 \mathbf{i}+5 \mathbf{j}) \end{aligned}$	$\begin{gathered} \text { M1A1 } \\ \\ \begin{array}{c} \text { B1ft,B1 } \\ {[4]} \end{array} \\ \hline \end{gathered}$
(c)	$\begin{aligned} & \overrightarrow{B E}=\frac{3}{13}(-12 \mathbf{i}+5 \mathbf{j}) \\ & \overrightarrow{A E}=\overrightarrow{A B}+\overrightarrow{B E}=\frac{29}{13} \mathbf{i}+\frac{80}{13} \mathbf{j} \end{aligned}$	M1A1 [2]
(d)	$\begin{aligned} & \overrightarrow{A F}=\lambda \overrightarrow{A E}=\lambda\left(\frac{29}{13} \mathbf{i}+\frac{80}{13} \mathbf{j}\right) \text { or } \lambda^{\prime}(29 \mathbf{i}+80 \mathbf{j}) \\ & \overrightarrow{A F}=\overrightarrow{A C}+\mu \overrightarrow{D C}=-2 \mathbf{i}+15 \mathbf{j}+\mu(5 \mathbf{i}+5 \mathbf{j}) \\ & \frac{29}{13} \lambda=-2+5 \mu \quad \frac{80}{13} \lambda=15+5 \mu \\ & \mu=\frac{7}{3} \quad\left(\lambda=\frac{13}{3}, \quad \lambda^{\prime}=\frac{1}{3}\right) \\ & D C: C F=1: \frac{7}{3} \quad(=3: 7) \end{aligned}$	B1 M1A1 M1A1 A1 [6]

Notes			
(a)	M1	For the correct vector statement for $\overrightarrow{D C}$ so $\overrightarrow{D C}=\overrightarrow{D A}+\overrightarrow{A C}$	
	A1	For the correct simplified expression $\overrightarrow{D C}=5 \mathbf{i}+5 \mathbf{j}$	
	M1	States $\overrightarrow{D C}=\overrightarrow{A B}$	Condone lack of arrows on vectors if they are clearly using vectors. i.e accept $D C=A B$
	A1	Conclusion required, therefore $A B C D$ is a parallelogram. Accept; a labelled diagram, shown, QED, or even a tick or \# etc.	
(b)	M1	For the correct vector statement for $\overrightarrow{B D}=\overrightarrow{B A}+\overrightarrow{A D}$ or $\overrightarrow{B D}=\overrightarrow{B C}+\overrightarrow{C D}$	
	A1	For the correct simplified expression $\overrightarrow{B D}=-12 \mathbf{i}+5 \mathbf{j}$	
	B1ft	For the correct magnitude of their vector. So that for $\overrightarrow{B D}=a \mathbf{i}+b \mathbf{j} \Rightarrow\|\overrightarrow{B D}\|=\sqrt{a^{2}+b^{2}},\|\overrightarrow{B D}\|=13$	
	B1ft	Writes ' $\frac{1}{13}$ ' $(a \mathbf{i}+b \mathbf{j})$ for their $\overrightarrow{B D}$	
(c)	M1	For any correct path for $\overrightarrow{A E}$ with correct use of the ratio for $\overrightarrow{E D}$ or $\overrightarrow{B E}$	
	A1	For $\overrightarrow{A E}=\frac{29}{13} \mathbf{i}+\frac{80}{13} \mathbf{j}$ oe	
Method 1 using triangle ACF (they may use any letters for μ and λ)			
(d)	B1	States $\overrightarrow{A F}=\lambda \overrightarrow{A E}$ or $\overrightarrow{A F}=\lambda^{\prime}\left(\frac{29}{13} \mathbf{i}+\frac{80}{13} \mathbf{j}\right)$,	
	M1	$\overrightarrow{A F}=\overrightarrow{A C}+\mu \overrightarrow{D C}$	
	A1	For the fully correct expression which need not be simplified $\overrightarrow{A F}=-2 \mathbf{i}+15 \mathbf{j}+\mu^{\prime}(5 \mathbf{i}+5 \mathbf{j})^{\prime}$	
	M1	Sets $\left.\lambda^{\prime}\left(\frac{29}{13} \mathbf{i}+\frac{80}{13} \mathbf{j}\right)\right)^{\prime}=-2 \mathbf{i}+15 \mathbf{j}+\mu^{\prime}(5 \mathbf{i}+5 \mathbf{j})^{\prime}$ and equates coefficients of \mathbf{i} and \mathbf{j} to form two equations in λ and μ. Condone \mathbf{i} and \mathbf{j} in their equations.	
	A1	For finding $\mu=\frac{7}{3}$	
	A1	$D C: C F=1: \frac{7}{3} \quad \text { or } \quad D C: C F=3: 7$	
Method 2 using triangle ADF (they may use any letters for μ and λ)			
	B1	States $\overrightarrow{A F}=\lambda \overrightarrow{A E}$ or $\overrightarrow{A F}=\lambda^{\prime}\left(\frac{29}{13} \mathbf{i}+\frac{80}{13} \mathbf{j}\right)$,	
	M1	$\overrightarrow{A F}=\overrightarrow{A D}+\mu \overrightarrow{D C}$	
	A1	For a fully correct expression which need not be simplified $\overrightarrow{A F}=-7 \mathbf{i}+10 \mathbf{j}+\mu^{\prime}(5 \mathbf{i}+5 \mathbf{j})^{\prime}$	
	M1	Sets $\lambda^{\prime}\left(\frac{29}{13} \mathbf{i}+\frac{80}{13} \mathbf{j}\right)^{\prime}=-7 \mathbf{i}+10 \mathbf{j}+\mu^{\prime}(5 \mathbf{i}+5 \mathbf{j})^{\prime}$ and equates coefficients of \mathbf{i} and \mathbf{j} to form two equations in μ and λ. Condone \mathbf{i} and \mathbf{j} in their equations.	
	A1	For finding $\mu=\frac{10}{3}$	

Useful sketch

Question number	Scheme	Marks
11 (a)	$\begin{aligned} & A C=20 x \text { or } A X=10 x \\ & E X=A X \tan 45^{\circ}=10 x \end{aligned}$	$\begin{gathered} \text { B1 } \\ \text { M1A1 } \\ {[3]} \end{gathered}$
(b)	$E A=\frac{E X}{\sin 45^{\circ}}=\frac{10 x}{\sin 45^{\circ}},=\sqrt{200} x=(10 \sqrt{2} x)$ Or use $\triangle E A C$ which is right-angled and isosceles	M1A1 [2]
(c)	$\begin{aligned} & \tan \theta=\frac{E X}{\frac{1}{2} A D}=\frac{10}{6} \\ & \theta=59.0^{\circ} \end{aligned}$	M1A1ft A1 [3]
(d)	Reqd angle is $A X D(=\phi)$ $\tan \frac{1}{2} \phi=\frac{6}{8}$ $\phi=73.7^{\circ}$ must be acute ALT: Use cosine rule in triangle $A X D$	M1A1 A1 [3]
(e)	Y is midpoint of $A D$ $E Y=x \sqrt{(10 \sqrt{2})^{2}-6^{2}}(=x \sqrt{164} \text { or } 2 x \sqrt{41})$ Area $\triangle A E D=6 x^{2} \sqrt{164}=250$ $x=1.8037 \ldots=1.804$	M1 M1 A1 [3]

In this question penalise ROUNDING of angles only once in parts (c) and (d).

This applies only if both answers are correct but over-accurate, i.e. they would both round to the correct angle to 1 decimal place. For example; for an angle in (c) given as 59.04° award M1A1A0, but if the angle in (d) is then given as 73.74° do not penalise the angle in (d), and award M1A1A1.

If however the answer given in (c) is 59° without 59.04° seen, this is M1A1A0, and because it is under-accurate, if they then give the angle in (d) as 73.74°, then this is awarded M1A1A0 as well.

Notes		
(a)	B1	For using Pythagoras theorem to find either $A C=20 x$ or $A X=10 x$ Do not accept $A C=20$ or $A X=10$
	M1	For $E X=A X \tan 45^{\circ}=(10 x)$ Ft their $A X$ but not if they use their $A C$ If there is no x in their working it is M0 UNLESS they put x into their final answer.
	A1	For 10x
ALT		
	M1	Triangle $A E C$ is isosceles with $\angle E A X=\angle E C X=45^{\circ}$ Hence triangle $A E X$ is also isosceles with $\angle E A X=\angle A E X=45^{\circ}$ If there is no x in their working it is M0 UNLESS they put x into their final answer.
	A1	Hence $A X=E X$ so $E X=10 x$
Accept $E X=10 x$ just stated without working.		
(b)	M1	Uses Pythagoras theorem or any acceptable trigonometry to find length $A E$ $\begin{aligned} & A E=\sqrt{(10 x)^{2}+(10 x)^{2}}=(\sqrt{200} x) \\ & A E=\frac{10 x}{\sin 45^{\circ}}=(\sqrt{200} x) \text { or } A E=\frac{10}{\cos 45^{\circ}}=(\sqrt{200} x) \end{aligned}$ If there is no x in their working it is M0 UNLESS they put x into their final answer.
	A1	$A E=10 x \sqrt{2}$ or $\sqrt{200} x \quad$ Also accept 14.1x or better Accept unsimplified answers. Even accept answers given as $A E=\frac{10 x}{\sqrt{2} / 2}$
(c)	M1	Uses their $E X$ to find $\tan \theta=\frac{{ }^{\prime} E X^{\prime}}{\frac{1}{2} A D}=\frac{' 10 x^{\prime}}{6 x} \Rightarrow \theta=\ldots$. (Or any other complete method for the required angle) Accept working without x 's as this is a ratio, but do not accept an x in the numerator or denominator only.
	A1ft	A correct value of θ for their $E X$
	A1	$\theta=59.0^{\circ}$ rounded correctly

| (d) | M1 | Angle required is $A X D$ |
| :--- | :--- | :--- | :--- |

